Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | Vol. 14, no. 1 | 72--79
Tytuł artykułu

Effect of TiB2 content and temperature on sliding wear behavior of AA7075/TiB2 in situ aluminum cast composite

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Aluminum alloy AA7075 reinforced TiB2 particulate composites were prepared by the in situ reaction of K2TiF6 and KBF4 to molten aluminum. The prepared aluminum matrix composites (AMCs) were characterized using X-ray diffraction and scanning electron microscopy (SEM). The sliding wear behavior of the AMCs was evaluated using a pin-on-disc wear apparatus. The effect of TiB2 particulate content (0, 3, 6 and 9 wt%) and temperature (30, 60, 90, 120, 150, 180, 210 and 240 °C) on wear rate and worn surface of the AMCs were studied. The results indicated that TiB2 particles were effective to enhance the wear resistance of the AMCs at all test temperatures studied in this work. The wear rate of the AMCs increased when the applied temperature was increased. The in situ formed TiB2 particles pushed the transition wear temperature by another 30 °C. The wear mode was observed to be abrasive at room temperature and metal flow at high temperature.
Wydawca

Rocznik
Strony
72--79
Opis fizyczny
Bibliogr. 34 poz., rys., wykr.
Twórcy
  • Department of Mechanical Engineering, St. Joseph's College of Engineering and Technology, Thanjavur 613403, Tamil Nadu, India
  • EGS Pillay Engineering College, Nagapattinam 611002, Tamil Nadu, India
  • Department of Mechanical Engineering, V V College of Engineering, Tisaiyanvilai 627657, Tamil Nadu, India
autor
  • Centre for Research in Metallurgy (CRM), School of Mechanical Sciences, Karunya University, Coimbatore 641114, Tamil Nadu, India
Bibliografia
  • [1] S. Kumar, V. Balasubramanian, Developing a mathematical model to evaluate wear rate of AA7075/Si Cp powder metallurgy composites, Wear 264 (11–12) (2008) 1026–1034.
  • [2] A. Mandal, M. Chakraborty, B.S. Murty, Effect of TiB2 particles on sliding wear behaviour of Al–4Cu alloy, Wear 262 (1–2) (2007) 160–166.
  • [3] C.S. Ramesh, R. Keshavamurthy, B.H. Channabasappa S. Pramod, Friction and wear behavior of Ni–P coated Si3N4 reinforced Al6061 composites, Tribology International 43 (3) (2010) 623–634.
  • [4] R.N. Rao, S. Das, Effect of matrix alloy and influence of SiC particle on the sliding wear characteristics of aluminium alloy composites, Materials and Design 31 (3) (2010) 1200–1207.
  • [5] A.M. Al-Qutub, I.M. Allam, M.A.A. Samad, Wear and friction of Al–Al2O3 composites at various sliding speeds, Journal of Material Science 43 (17) (2008) 5797–5803.
  • [6] S. Gopalakrishnan, N. Murugan, Production and wear characterization of AA6061 matrix titanium carbide particulate re in forced composite by enhanced stir casting method, Composites: Part B 43 (2) (2012) 302–308.
  • [7] F. Tag, X. Wu, S. Ge, J.Ye, H. Zhu, M. Hagiwara, J.M. Schoenung, Drysliding friction and wear properties of B4C particulate-reinforced Al-5083 matrix composites,Wear 264 (7–8) (2008) 555–561.
  • [8] S. Kumar, M. Chakraborty, V.S. Sarma, B.S. Murty,T ensile and wear behaviour of insitu Al–7Si/TiB2 particulate composites, Wear 265(1–2) (2008) 134–142.
  • [9] I. Dinaharan, N. Murugan, Drysliding wear behavior of AA6061/ZrB2 in-situ composite, Transactions of Nonferrous Metals Society of China 22 (4) (2012) 810–818.
  • [10] A.P. Sannino, H.J. Rack, Drysliding wear of discontinuously reinforced aluminum composites: review and discussion, Wear 189 (1–2) (1995) 1–19.
  • [11] T.P.D. Rajan, R. M. Pillai, B.C. Pai, K.G. Satyanarayana, P.K. Rohatgi, Fabrication and characterization of Al–7Si–0.35Mg/fly ash metal matrix composites processed by different stir casting routes, Composites Science and Technology 67 (15–16) (2007) 3369–3377.
  • [12] S.A. Sajjadi, H.R. Ezatpour, M.T. Parizi, Comparison of microstructure and mechanical properties of A356 aluminum alloy/Al2O3 composites fabricated by stirand compo-casting processes, Materials and Design 34 (1) (2012) 106–111.
  • [13] K. Kalaiselvan, N. Murugan, S. Parameswaran, Production and characterization of AA6061–B4C stir cast composite, Materials and Design 32 (7) (2011) 4004–4009.
  • [14] S.C. Tjong, Z.Y. Ma, Microstructural and mechanical characteristics of in situ metal matrix composites, Materials Science and Engineering: R29 (3–4) (2000) 49–113.
  • [15] C.S. Ramesh, A. Ahamed, B.H. Channabasappab, R. Keshavamurthy, Development of Al6063–TiB2 in situ composites, Materials and Design 31 (4) (2010) 2230–2236.
  • [16] G.N. Kumar, R. Narayanasamy, S. Natarajan, S.P.K. Babu K. Sivaprasad, S. Sivasankaran, Dry sliding wear behaviour of AA 6351–ZrB2 in situ composite at room temperature, MaterialsandDesign31(3)(2010)1526–1532.
  • [17] F. Ji, M. Z. Ma, A. J. Song, W.G. Zhang, H.T. Zong, S.X. Liang Y. Osamu, R.P.Liu, Creep behavior of in situ TiCP/2618 aluminum matrix composite, Materials Science and Engineering A 506 (1–2) (2009) 58–62.
  • [18] J. Xue, J. Wang, Y. Han, P. Li, B. Sun, Effects of CeO2 additive on the microstructure and mechanical properties of in situ TiB2/Al composite, journal of Alloys and Compounds 509 (5) (2011) 1573–1578.
  • [19] Y. Birol, In situ synthesis of Al–TiCp composites by reacting K2TiF6 and particulate graphite in molten aluminium, Journal of Alloys and Compounds 454 (1–2) (2008) 110–117.
  • [20] L.Y. Hui, D. Jun, Y.S.Rong, W.Wei, High temperature friction and wear behaviour of Al2O3 and/or carbon short fibre reinforced Al–12Si alloy composites, Wear 256 (3–4) (2004) 275–285.
  • [21] S. Natarajan, R. Narayanasamy, S.P. Kumaresh Babu, G. Dinesh, B. Anil Kumar, K. Sivaprasad, Sliding wear behaviour of Al6063/TiB2 in situ composites at elevated temperatures, Materials and Design 30 (7) (2009) 2521–2531.
  • [22] S. Kumar, V. Subramanya Sarma, B.S. Murty, Effect of temperature on the wear behavior of Al–7Si–TiB2 in-situ composites, Metallurgical and Materials Transactions A40 (1) (2009) 223–231.
  • [23] S. Kumar, V. Subramanya Sarma, B.S. Murty, High temperature wear behavior of Al–4Cu–TiB2 in situ composites, Wear 268 (11–12) (2010) 1266–1274.
  • [24] S. Jerome, B. Ravisankar, P. Kumar Mahat, S Natarajan, Synthesis and evaluation of mechanical and high temperature tribological properties of in-situ Al–TiC composites, Tribology International 43 (2010) 2029–2036.
  • [25] G. Rajaram, S Kumaran, T. Srinivasa Rao, M. Kamaraj, Studies on high temperature wear and its mechanism of Al–Si/graphite composite under drysliding conditions, Tribology International 43 (2010) 2152–2158.
  • [26] T.G. Río, A. Rico, M.A. Garrido, P. Poza, J. Rodríguez, Temperature and elocity transition sin drysliding wear of Al–Li/SiC composites, Wear 268 (5–6) (2010) 700–707.
  • [27] P.R.S. Kumar, S. Kumaran, T.S. Rao, S. Natarajan, High temperature sliding wear behavior of press-extruded AA6061/fly ash composite, Materials Science and Engineering A527(6) (2010) 1501–1509.
  • [28] H. Zhu, C. Jia, J. Song, J. Zhao, Y. Yao, Z. Xie, Microstructure and high temperature wear of the aluminum matrix composites fabricated by reaction from Al–ZrO2–B elemental powders, Powder Technology 217 (2012) 401–408.
  • 29] H. Zhu, C. Jar, J. Song, J. Zhao, J. Li, Z. Xie, High temperature dry sliding friction and wear behavior of aluminum matrix composites (Al3Zr+α-Al2O3)/Al, Tribology International 48 (2012) 78–86.
  • [30] S. Rajakumar, C. Muralidharan, V. Balasubramanian, Influence of friction stir welding process and tool parameters on strength properties of AA7075-T6 aluminium alloy joints, Materials and Design (2011) 535–549.
  • [31] Y. Han, X. Liu, X. Bian, In situ TiB2 particulate reinforced near eutectic Al–Si alloy composites, Composites: Part A 33 (3) (2002) 439–444.
  • [32] B. Ashok Kumar, N. Murugan, Metallurgical and mechanical characterization of stir cast AA60610–T6–Al Np composite, Materials and Design 40 (1) (2012) 52–58.
  • [33] A.M. Davidson, D. Regener, A comparison of aluminium- based metal-matrix composites reinforced with coated and uncoated particulate silicon carbide, Composites Science and Technology 60 (6) (2000) 865–869.
  • [34] Z. Zhang, D. L. Chen, Contribution of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites, Materials Science and Engineering A 483– 484 (2008) 148–152.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-20af1d20-a2c9-4996-8fee-cf83286f0473
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.