Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2020 | Vol. 40, no. 1 | 527--545
Tytuł artykułu

Sleep EEG analysis utilizing inter-channel covariance matrices

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Background: Sleep is vital for normal body functions as sleep disorders can adversely affect a person. Electroencephalographic (EEG) signals indicate brain functions and have characteristic signatures for various sleep stages. These enable the use of EEG as an effective tool for in-depth studies about sleep. Sleep stages are broadly divided as rapid eye movement (REM) and non-rapid eye movement (NREM). NREM is further divided into 3 stages. The objective of the work is to distinguish the given EEG epoch as wake, NREM1, NREM2, NREM3 and REM. DREAMS Subject Database containing 5 EEG channels is used here. This work focuses on utilizing EEG by exploiting variations in inter-dependencies of different brain regions during sleep. New method: Covariance matrices of the wavelet-decomposed channels are used to obtain the variations in inter-dependencies. The feature sets are: (1) simple matrix properties(MF) like trace, determinant and norm, (2) eigen-values (E1), (3) eigen-vector corresponding to the largest eigen-value (E2) and (4) tangent vectors obtained using Riemann geometry (RG-TS). The features are input to ensemble classifier with bagging. Subject-specific, All-subjects-combined and Leave-one-subject-out methods of analysis are carried out. Results: In all methods of analysis, RG-TS features give maximum accuracy (80.05%, 83.05% and 61.79%), closely followed by E1 (79.49%, 77.14% and 58.34%). Comparison with existing method: The proposed method obtains higher and/or comparable accuracy. This work also ensures no biasing of classifier due to unequal class distribution. Conclusion: The performances of RG-TS and E1 features reveal that the changes in interdependencies of pre-frontal and occipital lobe along with the central lobe can be used to distinguish the different sleep stages.
Wydawca

Rocznik
Strony
527--545
Opis fizyczny
Bibliogr. 60 poz., rys., tab., wykr.
Twórcy
Bibliografia
  • [1] Brown RE, Basheer R, McKenna JT, Strecker RE, McCarley RW. Control of sleep and wakefulness. Physiol Rev 2012;92:1087–187.
  • [2] McCarley RW. Neurobiology of REM and NREM sleep. Sleep Med 2007;8:302–30.
  • [3] Berry RB, Brooks R, Gamaldo CE, Harding SM, Marcus C, Vaughn BV, et al. The AASM manual for the scoring of sleep and associated events, Rules, Terminology and Technical Specifications, Darien, Illinois. Am Acad Sleep Med 2012;176.
  • [4] Carskadon, Mary A, William C, Dement. Normal human sleep: an overview. Principles and practice of sleep medicine 2005;4:13–23.
  • [5] Jiang D, Lu Y-n, Yu M, Yuanyuan W. Robust sleep stage classification with single-channel EEG signals using multimodal decomposition and HMM-based refinement. Expert Syst Appl 2019;121:188–203.
  • [6] Hassan AR, Bhuiyan MIH. A decision support system for automatic sleep staging from EEG signals using tunable q-factor wavelet transform and spectral features. J Neurosci Methods 2016;271:107–18.
  • [7] Hassan AR, Subasi A. A decision support system for automated identification of sleep stages from single-channel EEG signals. Knowl-Based Syst 2017;128:115–24.
  • [8] Seifpour S, Niknazar H, Mikaeili M, Nasrabadi AM. A new automatic sleep staging system based on statistical behavior of local extrema using single channel EEG signal. Expert Syst Appl 2018;104:277–93.
  • [9] Hassan AR, Bhuiyan MIH. Automated identification of sleep states from EEG signals by means of ensemble empirical mode decomposition and random under sampling boosting. Comput Methods Programs Biomed 2017;140:201–10.
  • [10] Zhu G, Li Y, Wen PP. Analysis and classification of sleep stages based on difference visibility graphs from a single-channel EEG signal. IEEE J Biomed Health Informatics 2014;18:1813–21.
  • [11] Ghimatgar H, Kazemi K, Helfroush MS, Aarabi A. An automatic single-channel EEG-based sleep stage scoring method based on hidden Markov model. J Neurosci Methods 2019;108320.
  • [12] Frilot II C, McCarty DE, Marino AA. An original method for staging sleep based on dynamical analysis of a single EEG signal. J Neurosci Methods 2018;308:135–41.
  • [13] Alickovic E, Subasi A. Ensemble SVM method for automatic sleep stage classification. IEEE Trans Instrum Meas 2018;67:1258–65.
  • [14] Chambon S, Galtier MN, Arnal PJ, Wainrib G, Gramfort A. A deep learning architecture for temporal sleep stage classification using multivariate and multimodal time series. IEEE Trans Neural Syst Rehabil Eng 2018;26:758–69.
  • [15] Zhang J, Wu Y. A new method for automatic sleep stage classification. IEEE Trans Biomed Circuits Syst 2017;11:1097–110.
  • [16] Mousavi S, Afghah F, Acharya UR. Sleepeegnet: automated sleep stage scoring with sequence to sequence deep learning approach. PLOS ONE 2019;14:e0216456.
  • [17] Devuyst S. DREAMS Subject database. [Online. accessed 15 November 2018].
  • [18] Hassan AR, Bhuiyan MIH. Computer-aided sleep staging using complete ensemble empirical mode decomposition with adaptive noise and bootstrap aggregating. Biomed Signal Process Control 2016;24:1–10.
  • [19] Hassan AR, Bhuiyan MIH. Automatic sleep scoring using statistical features in the EMD domain and ensemble methods. Biocybern Biomed Eng 2016;36:248–55.
  • [20] Hassan AR, Bhuiyan MIH. An automated method for sleep staging from EEG signals using normal inverse Gaussian parameters and adaptive boosting. Neurocomputing 2017;219:76–87.
  • [21] Sharma M, Goyal D, Achuth P, Acharya UR. An accurate sleep stages classification system using a new class of optimally time-frequency localized three-band wavelet filter bank. Comput Biol Med 2018;98:58–75.
  • [22] Rodríguez-Sotelo J, Osorio-Forero A, Jiménez-Rodríguez A, Cuesta-Frau D, Cirugeda-Roldán E, Peluffo D. Automatic sleep stages classification using EEG entropy features and unsupervised pattern analysis techniques. Entropy 2014;16:6573–89.
  • [23] Shi W, Shang P, Ma Y, Sun S, Yeh C-H. A comparison study on stages of sleep: quantifying multiscale complexity using higher moments on coarse-graining. Commun Nonlinear Sci Numer Simul 2017;44:292–303.
  • [24] Acharya UR, Bhat S, Faust O, Adeli H, Chua EC-P, Lim WJE, et al. Nonlinear dynamics measures for automated EEG-based sleep stage detection. Eur Neurol 2015;74:268–87.
  • [25] Yildirim O, Baloglu UB, Acharya UR. A deep learning model for automated sleep stages classification using PSG signals. Int J Environ Res Public Health 2019;16:599.
  • [26] Sors A, Bonnet S, Mirek S, Vercueil L, Payen J-F. A convolutional neural network for sleep stage scoring from raw single-channel EEG. Biomed Signal Process Control 2018;42:107–14.
  • [27] Cen L, Yu ZL, Tang Y, Shi W, Kluge T, Ser W. Deep learning method for sleep stage classification. International Conference on Neural Information Processing. Springer; 2010. p. 796–802.
  • [28] Michielli N, Acharya UR, Molinari F. Cascaded LSTM recurrent neural network for automated sleep stage classification using single-channel EEG signals. Comput Biol Med 2019;106:71–81.
  • [29] Supratak A, Dong H, Wu C, Guo Y. Deepsleepnet: a model for automatic sleep stage scoring based on raw single-channel EEG. IEEE Trans Neural Syst Rehabil Eng 2017;25:1998–2008.
  • [30] Tripathy R, Acharya UR. Use of features from RR-time series and EEG signals for automated classification of sleep stages in deep neural network framework. Biocybern Biomed Eng 2018;38:890–902.
  • [31] Malafeev A, Laptev D, Bauer S, Omlin X, Wierzbicka A, Wichniak A, et al. Automatic human sleep stage scoring using deep neural networks. Front Neurosci 2018;12:781.
  • [32] Rahman MM, Bhuiyan MIH, Hassan AR. Sleep stage classification using single-channel EOG. Comput Biol Med 2018;102:211–20.
  • [33] Al-Salman W, Li Y, Wen P. Detecting sleep spindles in EEGs using wavelet Fourier analysis and statistical features. Biomed Signal Process Control 2019;48:80–92.
  • [34] Vimala V, Ramar K, Ettappan M. An intelligent sleep apnea classification system based on EEG signals. J Med Syst 2019;43:36.
  • [35] Faust O, Razaghi H, Barika R, Ciaccio EJ, Acharya UR. A review of automated sleep stage scoring based on physiological signals for the new millennia. Comput Methods Programs Biomed 2019.
  • [36] Stevner A, Vidaurre D, Cabral J, Rapuano K, Nielsen SFV, Tagliazucchi E, et al. Discovery of key whole-brain transitions and dynamics during human wakefulness and non-REM sleep. Nat Commun 2019;10:1035.
  • [37] Braun AR, Balkin T, Wesenten N, Carson R, Varga M, Baldwin P, et al. Regional cerebral blood flow throughout the sleep-wake cycle. An h2 (15) o pet study. Brain 1997;120:1173–97.
  • [38] Nofzinger EA, Mintun MA, Wiseman M, Kupfer DJ, Moore RY. Forebrain activation in REM sleep: an FDG pet study. Brain Res 1997;770:192–201.
  • [39] Maquet P, Péters J-M, Aerts J, Delfiore G, Degueldre C, Luxen A, et al. Functional neuroanatomy of human rapid-eye- movement sleep and dreaming. Nature 1996;383:163.
  • [40] Barachant A, Bonnet S, Congedo M, Jutten C. Classification of covariance matrices using a Riemannian-based kernel for BCI applications. Neurocomputing 2013;112:172–8.
  • [41] Congedo M, Barachant A, Bhatia R. Riemannian geometry for EEG-based brain–computer interfaces a primer and a review. Brain–Comput Interfaces 2017;4:155–74.
  • [42] Meurant G. Wavelets: a tutorial in theory and applications, vol. 2. Academic Press; 2012.
  • [43] Daubechies I. Ten lectures on wavelets, vol. 61. SIAM; 1992.
  • [44] Subasi A. EEG signal classification using wavelet feature extraction and a mixture of expert model. Expert Syst Appl 2007;32:1084–93.
  • [45] Ghare PS, Paithane A. Human emotion recognition using non linear and non stationary EEG signal. 2016 International Conference on Automatic Control and Dynamic Optimization Techniques (ICACDOT). IEEE; 2016. p. 1013–6.
  • [46] Mohammadi Z, Frounchi J, Amiri M. Wavelet-based emotion recognition system using EEG signal. Neural Comput Appl 2017;28:1985–90.
  • [47] Usak SAM, Sugiman S, Sha'ari NAS, Kaneson M, Abdullah H, Noor NM, et al. EEG biomarker of sleep apnoea using discrete wavelet transform and approximate entropy. 2017 IEEE International Conference on Signal and Image Processing Applications (ICSIPA). IEEE; 2017. p. 330–4.
  • [48] Zhang Y, Liu B, Ji X, Huang D. Classification of EEG signals based on autoregressive model and wavelet packet decomposition. Neural Process Lett 2017;45:365–78.
  • [49] Lütkepohl H. Handbook of matrices, vol. 1. Wiley Chichester; 1996.
  • [50] Petersen P, Axler S, Ribet K. Riemannian geometry, vol. 171. Springer; 2006.
  • [51] Abe S. Support vector machines for pattern classification, vol. 2. Springer; 2005.
  • [52] Cover, Thomas, Peter Hart. Nearest neighbor pattern classification. IEEE Trans Inform Theory 1967;13(1):21–7.
  • [53] Dietterich TG. An experimental comparison of three methods for constructing ensembles of decision trees: bagging, boosting, and randomization. Mach Learn 2000;40:139–57.
  • [54] Maaten Lvd, Hinton G. Visualizing data using t-SNE. J Mach Learn Res 2008;9:2579–605.
  • [55] Fraga González G, Smit DJ, Van Der Molen MJ, Tijms J, Stam CJ, de Geus EJ, et al. EEG resting state functional connectivity in adult dyslexics using phase lag index and graph analysis. Front Human Neurosci 2018;12:341.
  • [56] Kiiski H, Rueda-Delgado LM, Bennett M, Knight R, Rai L, Roddy D, et al. Functional EEG connectivity is a neuromarker for adult attention deficit hyperactivity disorder symptoms. Clin Neurophysiol 2020;131:330–42.
  • [57] Briels C, Stam C, Scheltens P, Bruins S, Lues I, Gouw A. In pursuit of a sensitive EEG functional connectivity outcome measure for clinical trials in Alzheimer's disease. Clin Neurophysiol 2020;131:88–95.
  • [58] Tüshaus L, Omlin X, Tuura RO, Federspiel A, Luechinger R, Staempfli P, et al. In human non-rem sleep, more slow-wave activity leads to less blood flow in the prefrontal cortex. Sci Rep 2017;7:14993.
  • [59] Igawa M, Atsumi Y, Takahashi K, Shiotsuka S, Hirasawa H, Yamamoto R, et al. Activation of visual cortex in rem sleep measured by 24-channel NIRS imaging. Psychiatry Clin Neurosci 2001;55:187–8.
  • [60] Kaufmann C, Wehrle R, Wetter T, Holsboer F, Auer D, Pollmächer T, et al. Brain activation and hypothalamic functional connectivity during human non-rapid eye movement sleep: an EEG/FMRI study. Brain 2005;129: 655–67.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-20986290-3439-4a84-9e28-eae3d2ee2f7f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.