Warianty tytułu
Języki publikacji
Abstrakty
18Ni300 is widely used in precision moulds, national defence, and other engineering fields due to its high strength and toughness, and because its properties can be greatly changed after heat treatment. In this research, the 18Ni300 cladding layer was fabricated on 18Ni300 substrate using the laser cladding method and a solid solution artificial aging treatment was carried out to analyse its macro morphology and metallographic organization. Comparison of hardness, friction, and wear of cladding layers manufactured by laser cladding and of materials produced by rolling was performed before and after heat treatment. The results show that the solution and artificial aging heat treatment has a significant effect on the microstructure of the cladding layer fabricated by laser cladding. There are obvious differences in the organization and morphology of different parts of the cladding layer before heat treatment; the metallographic organization and morphology of different parts of the cladding layer after heat treatment are the same. The trend of change of material hardness before and after heat treatment is the same in that the cladding layer is greater than the rolled material and the hardness of the material after heat treatment is much greater than the hardness of the material before heat treatment. The hardness and wear resistance of the material after solution and artificial aging heat treatment has been significantly improved, and the impact on the rolled production material of the melted cladding layer manufactured by laser cladding is even greater.
Czasopismo
Rocznik
Tom
Strony
26--40
Opis fizyczny
Bibliogr. 41 poz., rys.
Twórcy
autor
- School of Mechanical Engineering and Automation, Liaoning University of TechnologyJinzhou Liaoning, China
autor
- School of Mechanical Engineering and Automation, Liaoning University of TechnologyJinzhou Liaoning, China
autor
- School of Mechanical Engineering and Automation, Liaoning University of TechnologyJinzhou Liaoning, China, 1552613466@qq.com
autor
- School of Mechanical Engineering and Automation, Liaoning University of TechnologyJinzhou Liaoning, China
Bibliografia
- [1] Lu BH. Additive manufacturing—current situation and future. Chin J Mech Eng. 2020;31(01): 19–23. doi: 10.3969/j.issn.1004-132X.2020.01.003
- [2] Tan CL, Zhou K, Ma W, Zeng DC. Research progress of laser additive manufacturing of maraging steels. Acta Metall Sin-Engl. 2019;56(01): 36–52. doi: 10.11900/0412.1961.2019.00129
- [3] Global Maraging Steel Market Report By Product Type (Grade 200, Grade 250, Grade 300, Grade 350), By Application Coverage (Automotive & Racing Car, Aviation & Space, Defense, Medical Device, Sports, Others) And By Regions – Industry Trends, Size, Share, Growth, Estimation and Forecast, 2022–2030, https://www.valu emarketresearch.com/report/maraging-steel-market (Reference date: 20 December 2024).
- [4] Kannan F, Leonard DN, Nandwana P. Optimization of direct aging temperature of Ti free grade 300 maraging steel manufactured using laser powder bed fusion (LPBF). Mater Sci Eng: A, 2021;817:141266. doi: 10.1016/j.msea.2021.141266
- [5] Niu Y, Zhao P, Ning L, et al. Research status and application of ultra-high strength steel at home and abroad. J Ordn Equip Eng. 2021;42(7): 274–279. doi: 10.11809/bqzbgcxb2021.07.047
- [6] Jiang ZH, Sun J, Berto F, Wang XI, Oian G. Fatigue and fracture behavior of AlSi10Mg manufactured by selective laser melting: a review. Phys Mesomech. 2023;26(4): 367–390. doi: 10.1134/S102995992304001X
- [7] Andrew W, Benoit MJ. A review of existing solidification crack tests and analysis of their transferability to additive manufacturing. J Mater Process Technol. 2023;320: 118090. doi: 10.1016/j.jmatprotec.2023.118090
- [8] Guiru M, Jingdong Z, Jiachen L, Jiang Z, Gong Y, Zhao J. Impact of pore defects on laser additive manufacturing of Inconel 718 alloy based on a novel finite element model: thermal and stress evaluation. Opt Laser Technol. 2023;167: 109782. doi: 10.1016/j.optlastec.2023.109782
- [9] Yizhen Z, Hang Z, Jianglong C, Sun X, Wang L, Xu X. An efficient pores suppression process design method for high strength BCC high entropy alloys via powder bed fusion. J Manuf Process. 2023:101: 371–385. doi: 10.1016/j.jmapro.2023.05.097
- [10] Yan J, Zhou Y, Gu R, Zhang X, Quach W-M, Yan M. A comprehensive study of steel powders (316L, H13, P20 and 18Ni300) for their selective laser melting additive manufacturing. Metals. 2019;9(1): 86. doi: 10.3390/met9010086
- [11] Di W, Deng G-W, Yang Y-Q, Chen J, Wu W-H, Wang H-L, Tan C-L. Interface microstructure and mechanical properties of selective laser melted multilayer functionally graded materials. J Cent South Univ. 2021;28(4): 1155–1169. doi: 10.1007/s11771-021-4687-9
- [12] Mingcai P, Junqiang X, Ningning L, Yong P, Zhou Q, Wang K. Microstructure and mechanical properties of the laminated heterostructured material with 316L stainless steel/18Ni300 maraging steel fabricated by WAAM. Mater Sci Eng A. 2023;881: 145300. doi: 10.1016/j.msea.2023.145300
- [13] Zhenjiang Z, Chaofang D, Decheng K, Wang L, Xiaoqing N, Zhang L, Wu W, Zhu L, Li X. Influence of pore defects on the mechanical property and corrosion behavior of SLM 18Ni300 maraging steel. Mater Charact. 2021;182: 111514. doi: 10.1016/j.matchar.2021.11 1514
- [14] Qun W, Jiaqi H, Li G, Yi Z, Peng J, Xinjua Y, et al. Electrochemical corrosion behavior of 18Ni300 maraging steel obtained by laser cladding deposition and selective laser melting in corrosive mediums: s comparative study. J Mater Eng Perform. 2022;31(10): 129425. doi: 10.1007/s11665-022-06849-7
- [15] Zhongfa M, Xiangdong L, Hongru Y, Xiaodong N, Lujie Z, Xuefen X. Processing optimization, microstructure, mechanical properties and nanoprecipitation behavior of 18Ni300 maraging steel in selective laser melting. Mater Sci Eng A. 2022;830: 142334. doi: 10.1016/j.msea.2021.142334
- [16] Weimin L, Zeyu Y, Qi G, Shufen L. Effect of energy density on the quality and properties of laser cladding 18Ni300. J Laser Appl. 2024;36(2): 022004. doi: 10.2351/7.0001240
- [17] Zeyu Y, Weimin L, Shufen L, Qi G. Study on overlap rate and machinability of selected laser melting of maraging steel. Mater Sci-Pol. 2023;41(2): 368–382. doi: 10.2478/msp-2023-0028
- [18] Ji X. Study on strengthening and toughening Mmechanism and property optimization of 18NI(350) ultra-high strength maraging steel. Yanshan University, 2021. doi: 10.27440/d.cnki.gysdu.2021.000411
- [19] Lian G, Cao Q, Zheng Y, et al. Multichannel lap forming and powder utilization ratio of laser cladding. J Mater Heat Treat. 2023;44(2): 127–139. doi: 10.13289/j.issn.1009-6264.2022-0356
- [20] Xinlei Luo, Meihong Liu, Zhenhua Li, et al. Influence of different heat source models on the calculated results of temperature field of selected laser melting 18Ni300. Chin J Lasers. 2021;48(14): 52–62. doi: 10.3788/CJL202148.1402005
- [21] Bin L, Zezhou K, Zhonghua L, Jianbin T, Peikang B, Baoqiang L, Y Nie. Performance consistency of AlSi10Mg alloy manufactured by simulating multi laser beam selective laser melting (SLM): microstructures and mechanical properties. Materials (Basel). 2018; 11(12). doi: 10.3390/ma11122354
- [22] Yang G, Yi-Lun H, Li-Chang Y, Zhangting W, Zhiqing Y, Mao-Lin C, et al. Ultrafast growth of high-quality monolayer WSe2 on Au. Adv Mater. 2017;29(29). doi: 10.1002/adma.201700990
- [23] Yuhang Y, Jinhua L, Fangping Y, Xiangyu L. Effect of laser remelting on the organization and properties of WC/Ni-based coatings generated in situ by laser cladding. J Manuf Process. 2023;102: 501–5212. doi: 10.1016/j.jmapro.2023.07.075
- [24] Badkoobeh F, Mostaan H, Rafiei M, Bakhsheshi-Rad HR, Ramakrishna S, Chen X. Additive manufacturing of biodegradable magnesium-based materials: design strategies, properties, and biomedical applications. J Magnes Alloy. 2023;11(03): 801–839. doi: 10.1016/j.jma.2022.12.001
- [25] Liang Y, Ding W, Liu G, Traub J, Gu Z. Interlaced stacked hollow Cu2O dendrite for stable lithium metal anode. Solid State Ionics. 2024;410: 116530. doi: 10.1016/j.ssi.2024.116530
- [26] Tang W, Yang X, Tian C, Xu Y. Microstructural heterogeneity and bonding strength of planar interface formed in additive manufacturing of Al–Mg–Si alloy based on friction and extrusion. Int J Minerals. 2022;29(09): 1755–1769. doi: 10.1007/s12613-022-2506-4
- [27] Guoxing Q, Qing D, Xiaoming L, Xiang-dong X, Dongping Z. Strengthening effect of multiscale second phases in reduced activation ferrite/martensitic steel. Steel Res Int. 2021;93(4). doi: 10.1002/srin.202100430
- [28] Jiangkai L, Zhubin H, Wei D, Xianggang R, Enyu G, Ninggiang S. Tailoring the microstructure and mechanical properties of laser metal-deposited Hastelloy X superalloy sheets via post heat-treatment. Mater Sci Eng A. 2023;884: 145546. doi: 10.1016/j.msea.2023.145546
- [29] Kürnsteiner P, Wilms MB, Weisheit A, Barriobero-Vila P, Jägle EA, Raabe D. Massive nanoprecipitation in an Fe-19Ni-xAl maraging steel triggered by the intrinsic heat treatment during laser metal deposition. Acta Mater. 2017;129: 52–60. doi: 10.1016/j.actamat.2017.02.069
- [30] Chen J, Feng B, Wang W, Liang Y, Zhang W, Xinzhu L, et al. Cobalt nanoparticles supported on nitrogen-doped carbon nanotubes for the efficient oxygen reduction reaction in Mg-air battery. J Alloys Compd. 2024;983: 173878. doi: 10.1016/j.jallcom.2024.173878
- [31] ASM International Handbook Committee. Properties and selection:irons, steels, and high-performance alloys. ASM Handbook. Materials Park, Ohio: Materials Information Company, America. 1991;1872–1873. doi: 10.31399/asm.hb.v01.9781627081610
- [32] Popovich VA, Borisov EV, Popovich AA, Sufiiarov VS, Masaylo DV, Alzina L. Functionally graded inconel 718 processed by additive manufacturing: crystallographic texture, anisotropy of microstructure and mechanical properties. Mater Design. 2017;114: 441–449. doi: 10.1016/j.matdes.2016.10.075
- [33] Ming C, Tao L, Bowen S, Gong X. Study on critical bonding rate and flatness of laser cladding on inclined matrix. Appl Laser. 2023;43: 26–32. doi: 10.11896/cldb.23010049
- [34] Li J, Wang X, Qi W, Tian J,. Laser nanocomposites-reinforcing/manufacturing of SLM 18Ni300 alloy under aging treatment. Materials Characterization, 2019;153. https://link.cnki.net/urlid/43.1239.TG.20230808.1558.002
- [35] Guo W, Xing Z, Li P, et al. Research status of cold sprayed Cu-based composite coatings and post-process treatments. Mater Rep. 2024;38(19): 23010049. doi: 10.16490/j.cnki.issn.1001-3660.2021.07.021
- [36] Zhang P, Yuan X-B, Zeng Z, et al. Influence of Fe content on microstructure and performance of powder metallurgy CuFe alloys. Trans Nonferrous Metals Soc Chin. 2023;1–24. https://link.cnki.net/urlid/43.1239.TG.20230808.1558.002
- [37] Zhang T, Cheng B, Li W-Sh, et al. Tribological performance of low pressure cold spray Ni-based cermet composite coatings. Surf Technol. 2021;50(07): 203–211. doi: 10.16490/j.cnki.issn.1001-3660.2021.07.021
- [38] Archard JF. Contact and rubbing of flat surfaces. J Appl Phys. 1953;24(8): 981–988 doi: 10.1063/1.1721448
- [39] Zheng Y, Liu Y, Song Q, et al. High-temperature oxidation behavior and wear resistance of copper-based composites with reinforcers of CZrSiO and Fe. J Chin Soc Corros Protect. 2020;40(02): 191–198. doi: 10.11902/1005.4537.2019.227
- [40] Deng G, Tieu K, Lan X, Su L. Effects of normal load and velocity on the dry sliding tribological behaviour of CoCrFeNiMo 0.2 high entropy alloy. Tribol Int. 2020;144: 106116. doi: 10.1016/j.triboint.2019.106116
- [41] An Q, Qi W, Zuo X. Microstructure and wear resistance of in-situ TiC reinforced Ti based coating by laser cladding on TA15 titanium alloy surface. J Mater Eng. 2022;50(04): 139–146. doi: 10.11868/j.issn.1001-4381.2020.000996
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-2089bd1b-3f48-4095-9701-1319c2dfa49c