Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | R. 24, nr 1 | 2--8
Tytuł artykułu

The tribological characteristics of zirconium diboride particle reinforced composites processed by SPS

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
PL
Charakterystyka tribologiczna kompozytów wzmocnionych cząstkami diborku cyrkonu spiekanych metodą SPS
Języki publikacji
EN
Abstrakty
EN
The tribological properties of composites based on 316L steel reinforced with zirconium diboride (5 and 10 wt.%) were described. The composites were fabricated by the spark plasma sintering (SPS) method. Wear resistance tests were carried out using the ball-on-disc method at room temperature under dry friction conditions. Countersamples made of SiC, Si3N4, ZrO2 and AISI52100 steel were used in the tests. The determined parameters included the coefficient of friction μ, mass loss m and specific wear rate Ws(disc). After the tribological tests, the surfaces of the samples were examined under a confocal microscope. The obtained research results showed that the tribological properties depend on the test conditions (the type of countersample) and on the content of the ZrB2 reinforcing phase.
PL
Przedstawiono właściwości tribologiczne kompozytow na osnowie stali 316L wzmocnionych diborkiem cyrkonu (5 i 10% wag.). Kompozyty zostały wytworzone z zastosowaniem metody Spark Plasma Sintering (SPS). Badania odporności na zużycie przeprowadzono, wykorzystując metodę ball-on-disc w temperaturze pokojowej w warunkach tarcia suchego. Testy przeprowadzono, stosując następujące przeciwprobki: SiC, Si3N4, ZrO2 i stal AISI52100. Wyznaczono współczynnik tarcia μ, ubytek masy m i wskaźnik zużycia Ws(disc). Powierzchnie probek po testach tribologicznych obserwowano za pomocą mikroskopu konfokalnego. Uzyskane wyniki badań wykazały, że właściwości tribologiczne zależą od warunkow badań (rodzaju przeciwprobki) i ilość fazy wzmacnianej ZrB2.
Wydawca

Rocznik
Strony
2--8
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
  • University of the National Education Commission, ul. Podchorążych 2, 30-084 Krakow, Poland
Bibliografia
  • 1. Gierek A., Zużycie tribologiczne, Wydawnictwo Politechniki Śląskiej, Gliwice 2006 (in Polish).
  • 2. Hebda M., Wachal A., Trybologia, Wydawnictwo Naukowo-Techniczne, Warszawa 1980 (in Polish).
  • 3. Płaza S., Margielewski L., Celichowski G., Wstęp do tribologii i tribochemia, Wydawnictwo Uniwersytetu Łodzkiego, Łodź 2005 (in Polish).
  • 4. Velasco F., Gordo E., Isabel R., Ruiz-Navas E.M., Bautista A., Torralba J.M., Mechanical and wear behaviour of high-speed steels reinforced with TiCN particles, International Journal of Refractory Metals & Hard Materials 2001, 19, 319-323, DOI: 10.1016/S0263-4368(01)00053-1.
  • 5. Vardavoulias M., Jouanny-Tresy C., Jeandin M., Slidingwear behaviour of ceramic particle-reinforced high-speed steel obtained by powder metallurgy, Wear 1993, 165, 2, 141-149, DOI: 10.1016/0043-1648(93)90329-K.
  • 6. Akhtar F., Microstructure evolution and wear properties of in situ synthesized TiB2 and TiC reinforced steel matrix composites, Journal of Alloys and Compounds 2008, 459, 491-497, DOI: 10.1016/j.jallcom.2007.05.018.
  • 7. Vardavoulias M., Jeandin M., Velasco F., Torralba M., Dry sliding wear mechanism for P/M austeitic stainless steel and their composites containing A2O3 and Y2O3 particles, Tribology International 1998, 28, 6, 499-506, DOI: 10.1016/0301-679X(95)00110-P.
  • 8. Tjong S.C., Lau K.C., Tribological behaviour of SiC particle-reinforced copper matrix composites, Materials Letters 2000, 43, 5-6, 274-280, DOI: 10.1016/S0167-577X(99)00273-6.
  • 9. Surapol R., Sithipong M., Ruangdaj T., Tribological behavior of sintered 316L stainless steel impregnated with MoS2 plain bearing, Wear 2008, 265, 3-4, 546-553, DOI:10.1016/j.wear.2007.11.014.
  • 10. Niranjan K., Lakshminarayanan P.R., Dry sliding wear behavior of in situ Al-TiB2 composites, Materials and Design 2013, 4, 167-173, DOI: 10.1016/j.matdes.2012.11.035.
  • 11. Raadnui S., Mahathananabodee S., Tongsri R., Tribological behaviour of sintered 316L stainless steel impregnated with MoS2 plain bearing, Wear 2008, 265, 546-553, DOI:10.1016/j.wear.2007.11.014.
  • 12. Tjong S.C., Lau K.C., Sliding wear of stainless steel matrix composite reinforced with TiB2 particles, Materials Letters 1999, 41, 153-158, DOI: 10.1016/S0167-577X(99)00123-8.
  • 13. Sulima I., Tribological properties of steel/TiB2 composites prepared by spark plasma sintering, Archives of Metallurgy and Materials 2014, 59, 4, 1263-1268, DOI: 10.2478/amm-2014-0216.
  • 14. Zhang Z., Chen Y., Zhang Y., Gao K., Zuo L., Qi Y., Tribology characteristics of ex-situ and in-situ tungsten carbide particles reinforced iron matrix composites produced by spark plasma sintering, Journal of Alloys and Compounds 2017, 704, 260-268, DOI: 10.1016/j.jallcom.2017.02.003.
  • 15. Srivastava A.K., Das K., The abrasive wear resistance of TiC and (Ti,W)C-reinforced Fe-17Mn austenitic steel matrix composites, Tribology International 2010, 43, 5-6, 944-950, DOI: 10.1016/j.triboint.2009.12.057.
  • 16. Taylor R.P., McClain S.T., Berry J.T., Uncertainty analysis of metal-casting porosity measurements using Archimedes’ principle, International Journal of Cast Metals Research 1999, 11, 247-257, DOI: 10.1080/13640461.1999.11819281.
  • 17. PN-EN ISO 6507-1:2018-05 – Metale – Pomiar twardości sposobem Vickersa – Część 1, Metoda badania (in Polish).
  • 18. International Standard, Fine ceramics (advanced ceramics, advanced technical ceramics) Determination of friction and wear characteristics of monolithic ceramics by ball-on-disc method, ISO 20808:2004(E).
  • 19. Meozzi M., Special use of the ball on disc standard test, Tribology International 2006, 39, 6, 496-505, DOI: 10.1016/j.triboint.2005.03.011.
  • 20. Cutler R.A., Engineering Properties of Borides, Ceramics and Glasses: Engineered Materials Handbook, ASM International, Materials Park, OH, 1991.
  • 21. McGuire M.F., Stainless Steels for Designs Engineers, Austenitic Stainless Steel, Chapter 6, ASM International 2008.
  • 22. Fan Z., Tsakiropoulos P., Miodownik A.P., Prediction of Young’s modulus of particulate two phase composites, Materials Science and Technology 1992, 8, 10, 922-929, DOI: 10.1179/mst.1992.8.10.922.
  • 23. ASTM E1876-09, Standard Test Method for Dynamic Young’s Modulus, Shear Modulus, and Poisson’s Ratio by Impulse Excitation of Vibration 2009, 15.
  • 24. Sulima I., Role of boron addition on the consolidation and properties of steel composites prepared by SPS, Bulletin of Materials Science 2015, 38, 1831-1841, DOI: 10.1007/s12034-015-0984-y.
  • 25. Sulima I., Putyra P., Hyjek P., Tokarski T., Effect of SPS parameters on densification and properties of steel matrix composites, Advanced Powder Technology 2015, 26, 4, 1152-1161, DOI: 10.1016/j.apt.2015.05.010.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-205339f0-2897-4d03-bebf-435bbdfd6156
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.