Czasopismo
2021
|
Vol. 21, no. 3
|
807--820
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
Advanced medium-Mn sheet steels show an opportunity for the development of cost-effective and light-weight automotive parts with improved safety and optimized environmental performance. These steels utilize the strain-induced martensitic transformation of metastable retained austenite to improve the strength–ductility balance. The improvement of mechanical performance is related to the tailored thermal and mechanical stabilities of retained austenite. The mechanical stability of retained austenite was estimated in static tensile tests over a wide temperature range from 20 °C to 200 °C. The thermal stability of retained austenite during heating at elevated temperatures was assessed by means of dilatometry. The phase composition and microstructure evolution were investigated by means of scanning electron microscopy, electron backscatter diffraction, X-ray diffraction and transmission electron microscopy techniques. It was shown that the retained austenite stability shows a pronounced temperature dependence and is also stimulated by the manganese addition in a 3–5% range.
Czasopismo
Rocznik
Tom
Strony
807--820
Opis fizyczny
Bibliogr. 40 poz., rys., wykr.
Twórcy
autor
- Department of Engineering Materials and Biomaterials, Silesian University of Technology, 18a Konarskiego Street, 44-100 Gliwice, Poland, aleksandra.kozlowska@polsl.pl
autor
- Department of Engineering Materials and Biomaterials, Silesian University of Technology, 18a Konarskiego Street, 44-100 Gliwice, Poland
autor
- Łukasiewicz Research Network-Institute for Ferrous Metallurgy, 12-14 K. Miarki Street, 44-100 Gliwice, Poland
autor
- Łukasiewicz Research Network-Institute for Ferrous Metallurgy, 12-14 K. Miarki Street, 44-100 Gliwice, Poland
autor
- Steel Institute, RWTH Aachen University, Intzestraße 1, 52-072 Aachen, Germany
autor
- Department of Engineering Materials and Biomaterials, Silesian University of Technology, 18a Konarskiego Street, 44-100 Gliwice, Poland
- Materials Research Laboratory, Silesian University of Technology, 18a Konarskiego Street, 44-100 Gliwice, Poland
autor
- Department of Engineering Materials and Biomaterials, Silesian University of Technology, 18a Konarskiego Street, 44-100 Gliwice, Poland
- Materials Research Laboratory, Silesian University of Technology, 18a Konarskiego Street, 44-100 Gliwice, Poland
Bibliografia
- [1] Podder AS, Bhadeshia HKDH. Thermal stability of austenite retained in bainitic steels. Mater Sci Eng A. 2010;527:2121–8. https://doi.org/10.1016/j.msea.2009.11.063.
- [2] Lee D, Kim JK, Lee S, Lee K, De Cooman BC. Microstructures and mechanical properties of Ti and Mo micro-alloyed medium Mn steel. Mater Sci Eng A. 2017;706:1–14. https://doi.org/10.1016/j.msea.2017.08.110.
- [3] Haidemenopoulos GN, Aravas N, Bellas I. Kinetics of strain-induced transformation of dispersed austenite in low-alloy TRIP steels. Mater Sci Eng A. 2014;615:416–23. https://doi.org/10.1016/j.msea.2014.07.099.
- [4] Xia P, Sabirov I, Molina-Aldareguia J, Verleysen P, Petrov R. Mechanical behavior and microstructure evolution of a quenched and partitioned steel during drop weight impact and punch testing. Mater Sci Eng A. 2018;737:18–26. https://doi.org/10.1016/j.msea.2018.09.015.
- [5] Timokhina IB, Hodgson PD, Pereloma EV. Effect of microstructure on the stability of retained austenite in Transformation-Induced-Plasticity steels. Metall Mater Trans A. 2004;35:2331–41. https://doi.org/10.1007/s11661-006-0213-9.
- [6] Suh DW, Kim SJ. Medium Mn transformation-induced plasticity steels: Recent progres and challenges. Scr Mater. 2017;126:63–7. https://doi.org/10.1016/j.scriptamat.2016.07.013.
- [7] Wang J, Van Der Zwaag S. Stabilization mechanisms of retained austenite in transformation-induced plasticity steel. Metall Mater Trans A. 2001;32:2001–1529. https://doi.org/10.1007/s11661-001-0240-5.
- [8] Sugimoto K, Tanino H, Kobayashi J. Impact toughness of medium-Mn transformation-induced plasticity-aided steels. Steel Res Int. 2015;86:1151–60. https://doi.org/10.1002/srin.201400585.
- [9] De Moor E, Matlock DK, Speer JG, Merwin M. Austenite stabilization through manganese enrichment. Scr Mater. 2011;64:185–8. https://doi.org/10.1016/j.scriptamat.2010.09. 040.
- [10] Jimenez-Melero E, Van Dijk N, Zhao L, Sietsma J, Offerman S. Martensitic transformation of individual grains in low-alloyed TRIP steels. Scr Mater. 2007;55:6713–23. https://doi.org/10.1016/j.scriptamat.2006.10.041.
- [11] Shen YF, Qiu LN, Sun X, Zuo L, Liaw PK, Raabe D. Effects of retained austenite volume fraction, morphology, and carbon content on strength and ductility of nanostructured TRIP-assisted steels. Mater Sci Eng A. 2015;636:551–64. https://doi.org/10.1016/j.msea.2016.11.017.
- [12] Sugimoto K, Misu M, Kobayashi M, Shirasawa H. Effects of second phase morphology on retained austenite morphology and tensile properties in a TRIP-aided dual phase steel sheet. ISIJ Int. 1993;33:775–82. https://doi.org/10.2355/isijinternational.33.775.
- [13] Tan X, Ponge D, Lu W, Xu Y, He H, Yan J, Wu D, Raabe D. Joint investigation of strain partitioning and chemical partitioning in ferrite-containing TRIP-assisted steels. Acta Mater. 2020;186:374–88. https://doi.org/10.3390/met9070771.
- [14] Li X, Wei L, Chen L, Zhao Y, Misra RDK. Work hardening behavior and tensile properties of a high-Mn damping steel at elevated temperatures. Mater Charact. 2018;144:575–83. https://doi.org/10.1016/j.matchar.2018.07.036.
- [15] Gronostajski Z, Niechajowicz A, Kuziak R, Krawczyk J, Polak S. The effect of the strain rate on the stress- strain curve and microstructure of AHSS. J Mater Process Technol. 2017;242:246–59. https://doi.org/10.1016/j.jmatprotec.2016.11.023.
- [16] Kim H, Lee J, Barlat F, Kim D, Lee MG. Experiment and modeling to investigate the effect of stress state, strain and temperature on martensitic phase transformation in TRIP-assisted steel. Acta Mater. 2015;97:435–44. https://doi.org/10.1016/j.actamat. 2015.06.023.
- [17] Pereira MP, Rolfe BF. Temperature conditions during ‘cold’ sheet metal stamping. J Mater Process Technol. 2014;214:1749–58. https://doi.org/10.1016/j.jmatprotec.2014.03.020.
- [18] Rusinek A, Klepaczko JR. Experiments on heat generated during plastic deformation and stored energy for TRIP steels. Mater Des. 2009;30:35–48. https://doi.org/10.1016/j.matdes.2008.04.048.
- [19] Rana R, De Moor E, Speer JG, Matlock DK. On the importance of adiabatic heating on deformation behavior of medium-manganese sheet steels. JOM. 2018;70:706–13. https://doi.org/10.1007/s11837-018-2779-2.
- [20] Jabłońska MB, Kowalczyk K. Microstructural aspects ofenergy absorption of high manganese steels. Procedia Manuf. 2019;27:91–7. https://doi.org/10.1016/j.promfg.2018.12.049.
- [21] Krizan D, De Cooman BC. Analysis of the strain-induced martensitic transformation of retained austenite in cold rolled microalloyed TRIP steel. Steel Res Int. 2008;79:513–22. https://doi.org/10.1002/srin.200806160.
- [22] De Cooman BC. Structure – properties relationship in TRIP steels containing carbide-free bainite. Solid State Mater Sci. 2004;8:285–303. https://doi.org/10.1016/j.cossms.2004.10.002.
- [23] Grajcar A, Woźniak D, Kozłowska A. Non-metallic inclusions and hot-working behaviour of advanced high-strength medium-Mn steels. Arch Metall Mater. 2016;61:811–20. https://doi.org/10.1515/amm-2016-0137.
- [24] ASTM E8/E8M–13a: Standard Test Methods for Tension Testing of Metallic Materials, ASTM International, West Conshohocken, 2013.
- [25] ASTM E975–3: Standard Practice for X-ray Determination of Retained Austenite in Steel with Near Random Crystallographic Orientation, ASTM International, West Conshohocken, 2013.
- [26] Dyson DJ, Holmes B. Effect of alloying additions on the lattice parameter of austenite. J Iron Steel Int. 1970;5:469–74.
- [27] Pereloma EV, Gazder AA, Timokhina IB, Retained austenite: Transformation-Induced Plasticity. Encyclopedia of Iron, Steel, and Their Alloys, Taylor and Francis, New York, 2016.
- [28] Hojo T, Kobayashi J, Kochi T, Sugimoto K. Effects of thermo-mechanical processing on microstructure and shear properties of 22SiMnCrMoB TRIP-aided martensitic steel. Iron Steel Technol. 2015;12:102–10.
- [29] Mirshekari B, Zarei-Hanzaki A, Barabi A, Moshiri A, Abedi HR, Lee SJ, Fujii H. Optimizing the austenite stability in a ferritic lightweight steel through thermomechanical processing. Mater Charact. 2020;166: 110367. https://doi.org/10.1016/j.matchar. 2020.110367.
- [30] Grajcar A, Kilarski A, Kozłowska A, Radwański K. Microstructure evolution and mechanical stability of retained austenite in thermomechanically processed medium-Mn steel. Materials. 2019. https://doi.org/10.3390/ma12030501.
- [31] Sun B, Fazeli F, Scott C, Guo B, Aranas C, Chu X, Jahazi M, Yue S. Microstructural characteristics and tensile behavior of medium manganese steels with different manganese additions. Mater Sci Eng A. 2018;729:496–507. https://doi.org/10.1016/j.msea.2018.04.115.
- [32] Vieira I, Klemm-Toole K, Buchner E, Williamson DL, Findley KO, De Moor E. A dilatometric study of tempering complemented by Mossbauer spectroscopy and other characterization techniques. Sci Rep. 2017;7:17337. https://doi.org/10.1038/s41598-017-17654-x.
- [33] Hunkel M, Dong J, Epp J, Kaiser D, Dietrich S, Schulze V, Rajaei A, Hallstedt B, Broeckmann C. Comparative study of the tempering behavior of different martensitic steels by means of in-situ diffractometry and dilatometry. Materials. 2020;13:5058. https://doi.org/10.3390/ma13225058.
- [34] Garcia de Andres C, Cavallero FG, Capdevila C, Alvarez LF. Application of dilatometric analysis to the study of solid-solid phase transformation in steels. Mater Character. 2002;48:101–11. https://doi.org/10.1016/S1044-5803(02)00259-0.
- [35] Sente software Ltd. A collection of free downloadable papers on the development and application of JMatPro. 2020.
- [36] Zhang M, Li L, Ding J, Wu Q, Wang YD, Almer J, Guo F, Ren Y. Temperature-dependent micromechanical behavior of medium-Mn transformation-induced-plasticity steel studied by in situ synchrotron X-ray diffraction. Acta Mater. 2017;141:294–303. https:// doi.org/10.1016/j.actamat.2017.09.030.
- [37] Rong T, Lin L, De Cooman BC, Xi-chen W, Peng S. Effect of temperature and strain rate on dynamic properties of low silicon TRIP steel. J Iron Steel Res Int. 2006;13:51–6. https://doi.org/10.1016/S1006-706X(06)60061-7.
- [38] Xu N, Jiang H, Wu X. TEM and HRTEM study of influence of thermal cycles with stress on dynamic recrystallization in Ti46Al8Nb1B during creep. Micron. 2008;39:1210–5. https://doi.org/10.1016/j.micron.2007.11.013.
- [39] Su D, Zhu Y. Scanning moire fringe imaging by scanning transmission electron microscopy. Ultramicroscopy. 2010;110:229–33. https://doi.org/10.1016/j.ultramic.2009.11.015.
- [40] Zaefferer S, Ohlert J, Bleck W. A study of microstructure, transformation mechanisms and correlation between microstructure and mechanical properties of a low alloyed TRIP steel. Acta Mater. 2004;52:2765–78. https://doi.org/10.1016/j.actamat.2004.02.044.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-203acbda-5122-4c9c-bd1a-431d88e6b360