Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 59, No. 1 | 11--41
Tytuł artykułu

A conceptual open pit mine architecture for the Moon environment

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In situ resource utilization (ISRU) activities are receiving increasing attention, both from space agencies and among the international science and industrial community. Prominent examples of ongoing ISRU space programs are the NASA Artemis program and the Terrae Novae program run by the European Space Agency. In technical sciences, there are at least three groups of activities related to ISRU: prospecting bodies in the context of space missions, technological investigations related to surface infrastructure and operations, and conceptual analyses of future mining activities. The present paper belongs to the third group and brings new insights into a potential open pit mine operating on the Moon. There are several novel contributions: the definition of the objectives of the mine, based on economic indicators; a conceptual description of a pit architecture dedicated to excavating ilmenite-rich feedstock; and a qualitative and quantitative description of the chosen processes and the mine’s topology. In the paper, there are also added links to other papers connected with ISRU activities.
Wydawca

Rocznik
Strony
11--41
Opis fizyczny
Bibliogr. 71 poz., rys., tab.
Twórcy
  • Space Research Centre, Polish Academy of Science (CBK PAN), Warsaw, Poland, kseweryn@cbk.waw.pl
autor
  • Faculty of Mechanical Engineering and Robotics, AGH University of Krakow, Kraków, Poland, akolusz@agh.edu.pl
  • Space Research Centre, Polish Academy of Science (CBK PAN), Warsaw, Poland, atkacz@cbk.waw.pl
  • Faculty of Mechanical Engineering and Robotics, AGH University of Krakow, Kraków, Poland, agallina@agh.edu.pl
  • Faculty of Civil Engineering, VSB - Technical University of Ostrava, Czech Republic, petr.konecny@vsb.cz
  • Faculty of Mechanical Engineering and Robotics, AGH University of Krakow, Kraków, Poland, pmlynarczyk@pk.edu.pl
  • Faculty of Mechanical Engineering, Kraków University of Technology, Kraków, Poland
Bibliografia
  • Abdin, A., et al., (2021, October 25–29), Solutions for Construction of a Lunar Base: A Proposal to Use the SpaceX Starship as a Permanent Habitat [Conference paper], 72nd International Astronautical Congress, Dubai, UAE.
  • Acién, F. G., Gómez-Serrano, C., Morales-Amaral, M. M., Fernández-Sevilla, J. M., & MolinaGrima, E. (2016). Wastewater treatment using microalgae: how realistic a contribution might it be to significant urban wastewater treatment? Applied Microbiology and Biotechnology, 100(21), 9013-9022.
  • Acién Fernández, F. G., Gómez-Serrano, C., & Fernández-Sevilla, J. M. (2018). Recovery of Nutrients From Wastewaters Using Microalgae. Frontiers in Sustainable Food Systems, 2:59.
  • Agarwal, D. K., Billore, S. D., Sharma, A. N., Dupare, B. U., & Srivastava, S. K. (2013). Soybean: Introduction, Improvement, and Utilization in India-Problems and Prospects. Agricultural Research, 2(4), 293-300.
  • Alami, A. H., Alasad, S., Ali, M., & Alshamsi, M. (2021). Investigating algae for CO2 capture and accumulation and simultaneous production of biomass for biodiesel production. Science of The Total Environment, 759, 143529.
  • Álvarez-González, A., Uggetti, E., Serrano, L., Gorchs, G., Ferrer, I., & Díez-Montero, R. (2022). Can microalgae grown in wastewater reduce the use of inorganic fertilizers? Journal of Environmental Management, 323, 116224.
  • Ammar, E. E., Aioub, A. A. A., Elesawy, A. E., Karkour, A. M., Mouhamed, M. S., Amer, A. A., & EL-Shershaby, N. A. (2022). Algae as Bio-fertilizers: Between current situation and future prospective. Saudi Journal of Biological Sciences, 29(5), 3083-3096.
  • Anand, M., Crawford, Balat-Pichelin, I.A. M., Abanades, S., Westrenen, W. van, Péraudeau, G., Jaumann, R., Seboldt, W., (2012), A brief review of chemical and mineralogical resources on the moon and likely initial in situ resource utilization (ISRU) applications, Planet. Space Sci. 74 (1), 42-48.
  • Averner, M. M. (1989). Controlled Ecological Life Support System. In Lunar Base Agriculture: Soils for Plant Growth (pp. 145-153).
  • Blair, B. R., Diaz, J., Duke M. B., (2002), Space Resource Economic Analysis Toolkit: The Case for Commercial Lunar Ice Mining, Final Report to the NASA Exploration Team.
  • Calle, C., Buhler, C., (2020), Measurement of the Angle of Repose of Apollo 14 Lunar Sample 14163, The Impact of Lunar Dust on Human Exploration, held 11-13 February, 2020 in Houston, Texas. LPI Contribution No. 2141, 2020, id.5030.
  • Carpenter, J., Fisackerly, R., Houdou., B., (2016), Measurement of the Angle of Repose of Apollo 14 Lunar Sample 14163, Space Policy, 37, 52-57.
  • Ciazela, J. et al., (2022), Concept and Design of Martian Far-IR ORE Spectrometer (MIRORES), Remote Sensing, 14(12).
  • Chen, M., Goyal, R., Majji, M., & Skelton, R. E. (2021). Review of space habitat designs for long term space explorations. Progress in Aerospace Sciences, 122, 100692.
  • Crawford, I. A., (2015), Lunar resources: A review, Progress in Physical Geography, 39(2), 137-167.
  • Daiki, W., et al., (2021) Association Between the Prevalence of Frailty and Doubly Labeled Water-Calibrated Energy Intake Among Community-Dwelling Older Adults. Edited by Anne Newman. The Journals of Gerontology: Vol. 76 No. 5 876-84.
  • European Space Agency, (2021), Terrae Novae 2030+ Strategy Roadmap, ESA.
  • Ewert, M., & Stromgren, C. (2019). Astronaut Mass Balance for Long Duration Missions. 49th International Conference on Environmental Systems, July 1-8, Boston, Massachusetts.
  • Farooq, W. (2021). Sustainable production of microalgae biomass for biofuel and chemicals through recycling of water and nutrient within the biorefinery context: A review. GCB Bioenergy, 13(6), 914-940.
  • Ferrante, A., Alexandros Petropoulos, S., Ertani, A., Chiaiese, P., Corrado, G., Colla, G., Kyriacou, M. C., & Rouphael, Y. (2018). Renewable Sources of Plant Biostimulation: Microalgae as a Sustainable Means to Improve Crop Performance. Frontiers in Plant Science. 9:1782.
  • Gitelson, J. I., & Lisovsky, G. M. (2002). Man-Made Closed Ecological Systems. CRC Press.
  • Guieysse, B., Béchet, Q., & Shilton, A. (2013). Variability and uncertainty in water demand and water footprint assessments of fresh algae cultivation based on case studies from five climatic regions. Bioresource Technology, 128, 317-323.
  • Guo, S. S., Mao, R. X., Zhang, L. L., Tang, Y. K., & Li, Y. H. (2017). Progress and prospect of research on controlled ecological life support technique. REACH, 6, 1-10.
  • Hadj-Romdhane, F., Jaouen, P., Pruvost, J., Grizeau, D., van Vooren, G., & Bourseau, P. (2012). Development and validation of a minimal growth medium for recycling Chlorella vulgaris culture. Bioresource Technology, 123, 366-374.
  • Hadler, K., et al., (2020), A universal framework for Space Resource Utilisation (SRU), Planetary and Space Science, 182(23):104811.
  • Heiken, G., H., Vaniman, D., T., French, B., M., (1991), Lunar Sourcebook, Cambridge University Press.
  • Hu, J., Li, S., Liu, H., & Hu, D. (2023). Reliability and lifetime estimation of bioregenerative life support system based on 370-day closed human experiment of lunar palace 1 and Monte Carlo simulation. Acta Astronautica, 202, 609-616.
  • International Space Exploration Coordination Group, (2018), The Global Exploration Roadmap, ISECG.
  • International Space Exploration Coordination Group, (2020), The Global Exploration Roadmap - Supplement August 2020: Lunar Surface Exploration Scenario Update, ISECG.
  • Juračka, D., Katzer, J., Kobaka, J., Świca, I., Seweryn, K., (2023), Concept of a 3D-Printed Voronoi Egg-Shaped Habitat for Permanent Lunar Outpost. Applied Sciences, 13(2):1153, https://doi.org/10.3390/app13021153.
  • Just, G. H., Smith, K., Joy, K. H., Roy, M. J., (2020, January), Parametric review of existing regolith excavation techniques for lunar In Situ Resource Utilisation (ISRU) and recommendations for future excavation experiments, Planetary and Space Science, Volume 180, 104746.
  • Kasztelewicz, Z. et al., (2014), Układy technologiczne w kopalniach odkrywkowych węgla brunatnego na świecie, Przegląd Górniczy.
  • Kobaka, J., Katzer, J., Zarzycki, P.K., Pilbara Craton Soil as A Possible Lunar Soil Simulant for Civil Engineering Applications. Materials, 12(23):3871, 2019, https://doi.org/10.3390/ma12233871.
  • Kobaka, J., Katzer, J., Seweryn, K., Magnetic Separation of Lunar Regolith as its Beneficiation for Construction Effort on the Moon, Proceedings of the 4th Conference on Aerospace RObotics, CARO'4, (Volume 58, No. SI1 - 2023), Artificial Satellites, https://doi.org/10.2478/arsa-2023-0023.
  • Kobaka, J., Katzer, J., Seweryn, K., Srokosz, P., Bujko, M., Konečný, P., A study of lunar soil simulants from construction and building materials perspective, Case Studies in Construction Materials, Volume 18, 2023, e02082, https://doi.org/10.1016/j.cscm.2023.e02082.
  • Kofman, W., et al., (2015), Properties of the 67P/Churyumov-Gerasimenko interior revealed by CONSERT radar, Science, 349 (6247).
  • Konecny, P., et al., Estimation of the Regolith Mining Pit Size for the Covering Lunar Habitat by Protective Layer, Proceedings of the 4th Conference on Aerospace RObotics, CARO'4, (Volume 58, 2023), Artificial Satellites.
  • Lasseur, C., Brunet, J., Weever, H. de, Dixon, M., Dussap, G., Godia, F., Leys, N., Mergeay, M., & Straeten, D. van der. (2010). Melissa: The European project of closed life support system. Gravitational and Space Biology, 23(2), 3-12.
  • Linne, D., L., et al., (2017, September 25-29), Overview of NASA Technology Development for In-Situ Resource Utilization (ISRU) [Conference paper], 68th International Astronautical Congress, Adelaide, Australia.
  • Linne, D., L., et al., (2019, June 11-14), Current NASA In Situ Resource Utilization (ISRU) Strategic Vision [Conference paper], Space Resources Roundtable Planetary & Terrestrial Mining and Sciences Symposium, Illinois, USA.
  • Lomax, B., A., Just, G., H., McHugh P. J., Broadley, P., K., Hutchings, G., C., Burke, P., A., Roy, M., J., Smith, K., L., Symes, M., D., (2022), Predicting the efficiency of oxygen-evolving electrolysis on the Moon and Mars, Nature Communications 13, 583.
  • Maczek, I. (2019). Uprawa soi non-gmo. Dział Technologii Produkcji Rolniczej i Doświadczalnictwa MODR. Małopolski Ośrodek Doradztwa Rolniczego z s. w Karniowicach.
  • Michel, P., DeMeo, F. E., Bottke, W. F., (2015), Asteroids IV, University of Arizona Press, Tucson.
  • Młynarczyk, P., Kolusz, A., Gallina, A., (2023), Sensitivity analysis of the DEM model numerical parameters on the value of the angle of repose of lunar regolith analogs. Vol. 58, No. SI1 - 2023, DOI: 10.2478/arsa-2023-0022.
  • Mueller, R. P., Mantovani, J. G., Schuler, J. M., Gelino, N. J., Sibille, L., (2019, June 11-14), Lunar Infrastructure for Landing and Launch Risk Mitigation, Space Resources Roundtable Planetary & Terrestrial Mining and Sciences Symposium, Golden, Colorado, USA.
  • Nitta, K., Otsubo, K., & Ashida, A. (2000). Integration test project of CEEF - A test bed for closed ecological life support systems. Advances in Space Research, 26(2), 335-338.
  • Nosheen, S., Ajmal, I., & Song, Y. (2021). Microbes as biofertilizers, a potential approach for sustainable crop production. Sustainability (Switzerland), 13(4), 1-20.
  • Paolo, T., Lante, A., Mosca, G. (2016) Essential Amino Acids: Master Regulators of Nutrition and Environmental Footprint? Scientific Reports Vol. 6, No. 1, 26074.
  • Pothinos, F., (2007), Slope Design Criteria for Large Open Pits - Case Study, Slope Stability 2007: Proceedings of the 2007 International Symposium on Rock Slope Stability in Open Pit Mining and Civil Engineering, Australian Centre for Geomechanics, Perth, Australia.
  • Prasad, K., Rai, V. K., & Murty, S. V. S. (2022). A comprehensive 3D thermophysical model of the lunar surface. Earth and Space Science 9.
  • Pruvost, J., le Borgne, F., Artu, A., & Legrand, J. (2017). Development of a thin-film solar photobioreactor with high biomass volumetric productivity (AlgoFilm©) based on process intensification principles. Algal Research, 21, 120-137.
  • Przylibski, T., (2022), Górnictwo pozaziemskie w Polsce, Przegląd Górniczy.
  • Purdy, R., & Langemeier, M. (2018). International Benchmarks for Soybean Production. 1-5.
  • Renuka, N., Guldhe, A., Prasanna, R., Singh, P., & Bux, F. (2018). Microalgae as multifunctional options in modern agriculture: current trends, prospects and challenges. Biotechnology Advances, 36(4), 1255-1273.
  • Richardson, J. E., Abramov, O., (2020), Modeling the Formation of the Lunar Upper Megaregolith Layer, The Planetary Science Journal 1 2.
  • Smith, A., et al. (2012), Lunar Net-a proposal in response to an ESA M3 call in 2010 for a medium sized mission, Experimental Astronomy Vol. 33, Issue 2-3, DOI 10.1007/s10686-011- 9250-5.
  • Smith, A., et al. (2009), LunarEX-a proposal to cosmic vision, Experimental Astronomy Vol. 23, Issue 3, DOI 10.1007/s10686-008-9109-6.
  • Spohn, T., et al., (2015), Thermal and mechanical properties of the near-surface layers of comet 67P/Churyumov-Gerasimenko, Science, 349 (6247).
  • Tannant, D.D., Regensburg, B., (2001), Guidelines for the mine haul road design, DOI: 10.14288/1.0102562.
  • Thorsten, D., Gonzales-Padro, A., Canadas, I., Vidal, A., (2017), Design and Test of a Concentrated Solar Powered Fluidized Bed Reactor for Ilmenite Reduction.
  • Tozzini, L., Pannunzio, A., & Soria, P. T. (2021). Water Footprint of Soybean, Maize and Wheat in Pergamino, Argentina. Agricultural Sciences, 12(03), 305-323.
  • Vergaaij, M., McInnes, C., R., Ceriotti, M., (2021), Comparison of material sources and customer locations for commercial space resource utilization, Acta Astronautica, 184, 3-34.
  • Verseux, C., Poulet, L., & de Vera, J. P. (2022). Editorial: Bioregenerative life-support systems for crewed missions to the Moon and Mars. In Frontiers in Astronomy and Space Sciences (Vol. 9). Frontiers Media S.A.
  • Watanabe, D., Yoshida, T., Nanri, H., Watanabe, Y., Date, H., Itoi, A., Goto, C., IshikawaTakata, K., Sagayama, H., Ebine, N., Kobayashi, H., Kimura, M., & Yamada, Y. (2021). Association Between the Prevalence of Frailty and Doubly Labeled Water-Calibrated Energy Intake Among Community-Dwelling Older Adults. The Journals of Gerontology: Series A, 76(5), 876-884.
  • Warren, W., J., et al., (2014, January 13-17), Robotic Asteroid Prospector (RAP) NIAC Phase 1 Results [Conference paper], 7th Symposium on Space Resource Utilization, Maryland, USA.
  • Weclewski, P., et al., (2022, June 1-2), Sample Fetch Rover Guidance, Navigation and Control Subsystem - an Overview, Model [Conference paper], 16th Symposium on Advanced Space Technologies in Robotics and Automation, Noordwijk, Netherlands.
  • Wisniewski, L., Przerwa, M., Grygorczuk, J., (2022, June 1-2), Highly Energetic Actuator for Hopping Scout-Robot for Lunar Gravity - Test Results of the Breadboard Model [Conference paper], 16th Symposium on Advanced Space Technologies in Robotics and Automation, Noordwijk, Netherlands.
  • Yebo, L., & Samir, K. K. (2016). Bioenergy Principles and Applications. Wiley-Blackwell.
  • Zhang, W., Zhao, B., Lou, X., (2020), Moon’s subsurface heat flow mapping. Acta Geophysica. 68, 577-596SRK Consulting, 2014, Ajax Project Open Pit Geotechnical Slope Design Parameters.
  • Zhang, W., Cheng, Q., Li, J., (2023), Technical progress in the utilization and exploitation of small celestial body resources; Acta Astronautica, Volume 208, 219-255.
  • Zhao, J., et al., (2020), AES: Autonomous Excavator System for Real-World and Hazardous Environments, ArXiv.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-203841c8-a316-4d9e-9e88-70a93b0a30e9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.