Warianty tytułu
Języki publikacji
Abstrakty
Natural gas in Poland is transported by onshore pipelines with a maximum operating pressure of up to 8.4 MPa. The gas pressure is then reduced to 1.6 MPa or 0.4 MPa for delivery to regional/local distribution networks or to end-user installations. The pressure reduction is usually performed by a pressure regulator. Pressure reduction can also be achieved through expansion of the gas at the turboexpander, which can be harnessed to produce electricity from the recovered mechanical energy of the gas. The main objective of this study is to investigate the factors influencing the efficiency of the gas expansion process and to carry out a feasibility study involving the application of turboexpanders at selected natural gas pressure regulator stations belonging to the Polish transmission system operator Gaz System S.A.
Czasopismo
Rocznik
Tom
Strony
289--294
Opis fizyczny
Bibliogr. 23 poz., tab., wykr.
Twórcy
autor
- Warsaw University of Technology, District Heating and Natural Gas Systems Division, Nowowiejska 20, 00-653 Warszawa, Poland
autor
- Warsaw University of Technology, District Heating and Natural Gas Systems Division, Nowowiejska 20, 00-653 Warszawa, Poland, maciej.chaczykowski@is.pw.edu.pl
autor
- Warsaw University of Technology, District Heating and Natural Gas Systems Division, Nowowiejska 20, 00-653 Warszawa, Poland
Bibliografia
- [1] J. Pozivil, Use of expansion turbines in natural gas pressure reduction stations, Acta Montanistica Slovaca 9 (3) (2004) 258–260.
- [2] W. Kostowski, The possibility of energy generation within the conventional natural gas transport system, Strojarstvo 52 (4) (2010) 429–440.
- [3] D. Borelli, F. Devia, M. M. Brunenghi, C. Schenone, A. Spoladore, Waste energy recovery from natural gas distribution network: Celsius project demonstrator in Genoa, Sustainability 7 (12) (2015) 16703–16719. doi:10.3390/su71215841. URL http://dx.doi.org/10.3390/su71215841
- [4] M. A. Neseli, O. Ozgener, L. Ozgener, Energy and exergy analysis of electricity generation from natural gas pressure reducing stations, Energy Conversion and Management 93 (2015) 109–120. doi:10.1016/j.enconman.2015.01.011. URL http://dx.doi.org/10.1016/j.enconman.2015.01. 011
- [5] W. J. Kostowski, S. Usón, W. Stanek, P. Bargiel, Thermoecological cost of electricity production in the natural gas pressure reduction process, Energy 76 (2014) 10–18. doi:10.1016/j.energy.2014.01.045. URL http://dx.doi.org/10.1016/j.energy.2014.01.045
- [6] S. Khanmohammadi, P. Ahmadi, K. Atashkari, R. K. Kamali, Progress in Clean Energy, Volume 1 Analysis and Modeling, Springer International Publishing, Cham, 2015, Ch. Design and Optimization of an Integrated System to Recover Energy from a Gas Pressure Reduction Station, pp. 89–107. doi:10.1007/978-3-319-16709-1_6. URL http://dx.doi.org/10.1007/978-3-319-16709-1_6
- [7] M. Farzaneh-Gord, S. Izadi, M. Deymi-Dashtebayaz, S. I. Pishbin, H. Sheikhani, Optimizing natural gas reciprocating expansion engines for town border pressure reduction stations based on AGA8 equation of state, Journal of Natural Gas Science and Engineering 26 (2015) 6–17. doi:10.1016/j.jngse.2015.05.025. URL http://dx.doi.org/10.1016/j.jngse.2015.05.025
- [8] T. He, Y. Ju, Design and optimization of natural gas liquefaction process by utilizing gas pipeline pressure energy, Applied Thermal Engineering 57 (1-2) (2013) 1–6. doi:10.1016/j.applthermaleng.2013.03.044. URL http://dx.doi.org/10.1016/j.applthermaleng.2013.03.044
- [9] M. T. Jelodar, H. Rastegar, M. Pichan, Induction generator voltage improvement using a new control strategy for turbo-expander driving systems, International Journal of Electrical Power & Energy Systems 64 (2015) 1176–1184. doi:10.1016/j.ijepes.2014.09.003. URL http://dx.doi.org/10.1016/j.ijepes.2014.09.003
- [10] A. Osiadacz, F. E. Uilhoorn, M. Chaczykowski, Computation of hydrate phase equilibria and its application to the Yamal-Europe gas pipeline, Petroleum Science and Technology 27 (2) (2009) 208–225. doi:10.1080/10916460701700336. URL http://dx.doi.org/10.1080/10916460701700336
- [11] A. Osiadacz, F. Uilhoorn, M. Chaczykowski, Assessing hydrate formation in natural gas pipelines under transient operation, Archives of Mining Sciences 58 (1) (2013) 131–144. doi:10.2478/amsc-2013-0009. URL http://dx.doi.org/10.2478/amsc-2013-0009
- [12] P. Bargiel, W. Kostowski, S. Uson, An approach to enhance combined cycle performance by integration with a gas pressure reduction station, Journal of Power Technologies 95 (1) (2015) 79–89.
- [13] W. J. Kostowski, S. Usón, Thermoeconomic assessment of a natural gas expansion system integrated with a co-generation unit, Applied Energy 101 (2013) 58–66. doi:10.1016/j.apenergy.2012.04.002. URL http://dx.doi.org/10.1016/j.apenergy.2012.04. 002
- [14] W. J. Kostowski, S. Usón, Comparative evaluation of a natural gas expansion plant integrated with an IC engine and an organic Rankine cycle, Energy Conversion and Management 75 (2013) 509–516. doi:10.1016/j.enconman.2013.06.041. URL http://dx.doi.org/10.1016/j.enconman.2013.06. 041
- [15] V. Farzaneh-Kord, A. Khoshnevis, A. Arabkoohsar, M. Deymi-Dashtebayaz, M. Aghili, M. Khatib, M. Kargaran, M. Farzaneh-Gord, Defining a technical criterion for economic justification of employing CHP technology in city gate stations, Energy 111 (2016) 389–401. doi:10.1016/j.energy.2016.05.122. URL http://dx.doi.org/10.1016/j.energy. 2016.05.122
- [16] C. Howard, P. Oosthuizen, B. Peppley, An investigation of the performance of a hybrid turboexpander-fuel cell system for power recovery at natural gas pressure reduction stations, Applied Thermal Engineering 31 (13) (2011) 2165–2170. doi:10.1016/j.applthermaleng.2011.04.023. URL http://dx.doi.org/10.1016/j.applthermaleng.2011.04.023
- [17] A. Darabi, A. Shariati, R. Ghanaei, A. Soleimani, Economic assessment of a hybrid turboexpander-fuel cell gas energy extraction plant, Turkish Journal of Electrical Engineering & Computer Sciences 24 (2016) 733–745. doi:10.3906/elk-1303-7.
- [18] A. Arabkoohsar, L. Machado, R. Koury, Operation analysis of a photovoltaic plant integrated with a compressed air energy storage system and a city gate station, Energy 98 (2016) 78–91. doi:10.1016/j.energy.2016.01.023. URL http://dx.doi.org/10.1016/j.energy.2016.01.023
- [19] R. Ghezelbash, M. Farzaneh-Gord, H. Behi, M. Sadi, H. S. Khorramabady, Performance assessment of a natural gas expansion plant integrated with a vertical ground-coupled heat pump, Energy 93 (2015) 2503–2517. doi:10.1016/j.energy.2015.10.101. URL http://dx.doi.org/10.1016/j.energy.2015.10.101
- [20] M. Farzaneh-Gord, R. Ghezelbash, A. Arabkoohsar, L. Pilevari, L. Machado, R. Koury, Employing geothermal heat exchanger in natural gas pressure drop station in order to decrease fuel consumption, Energy 83 (2015) 164–176. doi:10.1016/j.energy.2015.02.093. URL http://dx.doi.org/10.1016/j.energy.2015.02. 093
- [21] R. Ghezelbash, M. Farzaneh-Gord, M. Sadi, Performance assessment of vortex tube and vertical ground heat exchanger in reducing fuel consumption of conventional pressure drop stations, Applied Thermal Engineering 102 (2016) 213–226. doi:10.1016/j.applthermaleng.2016.03.110. URL http://dx.doi.org/10.1016/j.applthermaleng.2016.03.110
- [22] E. W. Lemmon, M. L. Huber, M. O. McLinden, NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, National Institute of Standards and Technology, Gaithersburg (2013).
- [23] E. K. Ardali, E. Heybatian, Energy regeneration in natural gas pressure reduction stations by use of gas turbo expander; evaluation of available potential in Iran, in: Proceedings of the 24th World Gas Conference, Buenos Aires, Argentina, International Gas Union, 2009, pp. 5–9.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-1fad0595-912e-44e4-8297-ddfb2824401c