Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2020 | Vol. 20, no. 3 | 385--395
Tytuł artykułu

New approach of friction AlN ceramics metallization with the initial FEM verification

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Although, the friction method is well known for metals surface modification, the novelty of the article is based on the new idea of ceramics surface treatment with metal. The paper describes AlN ceramic metallization process by titanium coating deposition, obtained in friction surfacing method, which has been developed by the authors. The friction energy is directly transformed into heat and delivered in a specified amount precisely to the joint being formed between the metallic layer and the ceramics substrate material. The stress and temperature fields (as factors promoting the formation of diffusion joints) induced in the joint during the metallization process were qualitatively determined with the finite element method analysis and these results were verified experimentally. Finally, obtained structures of the metallic coatings were investigated and the results are discussed in the paper. As a novelty it was found, that the conditions of frictional metallization can favour the formation of a coating-substrate bond based on diffusion phenomena and atomic bonds of the coating components with the components of the substrate, despite the fact that it happens for metal–ceramics pairs. This type of connection is usually associated with long-term heating/annealing in chamber furnaces, because for diffusion in a solid state the most effective factor is time and temperature. It was shown that other components of the chemical potential gradient, such as temperature gradient, gradient and stress level, load periodicity and configuration of pairs of elements with high chemical affinity may play an important role in friction metallization. As a result, the relatively short time of operation (friction) is compensated.
Wydawca

Rocznik
Strony
385--395
Opis fizyczny
Bibliogr. 37 poz., rys., wykr.
Twórcy
  • Institute of Manufacturing Technologies, Warsaw University of Technology, Narbutta 85 str., 02-524 Warsaw, Poland, r.cacko@wip.pw.edu.pl
  • Institute of Manufacturing Technologies, Warsaw University of Technology, Narbutta 85 str., 02-524 Warsaw, Poland
  • Institute of Manufacturing Technologies, Warsaw University of Technology, Narbutta 85 str., 02-524 Warsaw, Poland
  • Institute of Manufacturing Technologies, Warsaw University of Technology, Narbutta 85 str., 02-524 Warsaw, Poland
Bibliografia
  • [1] Świercz R, Oniszczuk-Świercz D. Experimental investigation of surface layer properties of high thermal conductivity tool steel after electrical discharge machining. Metals. 2017;7(12):550.
  • [2] Górka J, Czupryński A. The properties and structure of arc sprayed coatings alloy of Fe–Cr–Ti–Si–Mn. Int J Mod Manuf Technol. 2016;8(1):35–40.
  • [3] Chmielewski T, Golański D. New method of in-situ fabrication of protective coatings based on Fe–Al intermetallic compounds. Proc Inst Mech Eng J Eng Part B. 2011;225(4):611–6.
  • [4] Morawiński Ł, Chmielewski T, Olejnik L, Buffa G, Campanella D, Fratini L. Welding abilities of UFG metals. AIP Conf Proc. 2018;1960(1):050012. https ://doi.org/10.1063/1.50348 85.
  • [5] Czupryński A, Górka J, Adamiak M, Tomiczek B. Testing of flame sprayed Al2O3 matrix coatings containing TiO2. Arch Metall Mater. 2016;61(3):1363–70.
  • [6] Pawlak A, Rosienkiewicz M, Chlebus E. Design of experiments approach in AZ31 powder selective laser melting process optimization. Arch Civ Mech Eng. 2017;17(1):9–18.
  • [7] Strzelecka M, Iwaszko J, Malik M, Tomczyński S. Surface modification of the AZ91 magnesium alloy. Arch Civ Mech Eng. 2015;15(4):854–61.
  • [8] Iwaszko J, Strzelecka M, Kudła K. Surface modification of the AZ91 magnesium alloy using GTAW technology. Bull Pol Acad Sci Tech Sci. 2017;65(6):917–26.
  • [9] Barlak M, Olesińska W, Piekoszewski J, Chmielewski M, Jagielski J, Kaliński D, Werner Z, Sartowska B. Ion implantation as a pretreatment method of AlN substrate for direct bonding with copper. Vacuum. 2005;78(2–4):205–9.
  • [10] Barlak M, Olesińska W, Piekoszewski J, Werner Z, Chmielewski M, Jagielski J, Kaliński D, Sartowska B, Borkowska K. Ion beam modification of ceramic component prior to formation of AlN-Cu joints by direct bonding process. Surf Coat Technol. 2007;201(19–20):8317–21.
  • [11] Sałaciński T, Winiarski M, Przesmycki A, Świercz R, Chmielewski T (2018) Applying titanium coatings on ceramic surfaces by rotating brushes. In: Conference Proceedings, the 27th international conference on metallurgy and materiale-metal 2018, pp 1235–1240.
  • [12] Iwaszko J, Kudła K, Fila K. Friction stir processing of the AZ91 magnesium alloy with SiC particles. Arch Mater Sci Eng. 2016;77(2):85–92. https ://doi.org/10.5604/18972 764.12256 04.
  • [13] Chmielewski T, Golański D, Włosiński W, Zimmerman J. Utilizing the energy of kinetic friction for the metallization of ceramics. Bull Pol Acad Sci Tech Sci. 2015;2015(63):201–7.
  • [14] Chmielewski T, Golański D, Włosiński W. Metallization of ceramic materials based on the kinetic energy of detonation waves. Bull Pol Acad Sci Tech Sci. 2015;63(2):449–56.
  • [15] Chmielewski M, Dutkiewicz J, Kaliński D, Litynska-Dobrzynska L, Pietrzak K, Strojny-Nedza A. Microstructure and properties of hot-pressed molybdenum-alumina composites. Arch Metall Mater. 2012;57(3):687–93.
  • [16] Kyu-Yong L, Won-Kyu H, In-Su J. Brazing joining of Al2O3–SUS304 with surface modification method. In: Proceedings of the 3rd international brazing and soldering conference (ASM International) Texas USA, April, 24–26, 2006.
  • [17] Nagel R, Hahn H, Balogh AG. Diffusion processes in metal/ceramic interfaces under heavy ion irradiation. Nucl Instrum Methods Phys Res Sect B. 1999;148(1–4):930–5.
  • [18] Olesińska W, Kaliński D, Chmielewski M, Diduszko R, Wlosiński W. Influence of titanium on the formation of a “barrier” layer during joining an AlN ceramic with copper by the CDB technique. J Mater Sci Mater Electron. 2006;17(10):781–8.
  • [19] Zhu S, Włosiński W. Joining of AlN ceramic to metals using sputtered Al or Ti film. J Mater Process Technol. 2001;109:277–82.
  • [20] Zdunek K. Concept, techniques, deposition mechanism of impulse plasma deposition-a short review. Surf Coat Technol. 2007;201:4813–6.
  • [21] Ambroziak A, Korzeniowski M, Kustroń P, Winnicki M. Friction welding of niobium and tungsten pseudoalloy joints. Int J Refract Met Hard Mater. 2011;29:499–504.
  • [22] Zimmerman J, Włosiński W, Lindemann Z. Thermo-mechanical and diffusion modelling in the process of ceramic-metal friction welding. J Mater Process Technol. 2009;209:1644–53.
  • [23] Malopheyev S, Mironov S, Kulitskiy V, Kaibyshev R. Friction-stir welding of ultrafine grained sheets of Al–Mg–Sc–Zr alloy. Mater Sci Eng A. 2015;624:132–21313.
  • [24] Su J-Q, Nelson TW, Sterling CJ. Friction stir processing of large-area bulk UFG aluminum alloys. Scripta Mater. 2005;52:135–40.
  • [25] Presz W, Cacko R. Ultrasonic assisted microforming. In: Conference Proceedings, the 26th international conference on metallurgy and materiale-metal 2017, 2017, pp 521–526.
  • [26] Presz W, Cacko R. Influence of micro-rivet manufacturing process on quality of micro-joint. AIP Conf Proc. 2011;1353:541–6.
  • [27] Chmielewski T, Golański D, Hudycz M, Sałaciński T, Świercz R. Właściwości powierzchniowe i strukturalne tytanowej powłoki osadzanej tarciowo na podłożu ceramicznym AlN. Przemysł Chemiczny. 2019;2:1000–5. https ://doi.org/10.15199/62.2019.2.XX.
  • [28] Presz W, Cacko R. Determination of material distribution in heading process of small bimetallic bar. AIP Conf Proc 2018;1960:050014. https ://doi.org/10.1063/1.50348 87.
  • [29] Boyer R, Welsch G, Collings E, editors. Materials property hand-book: titanium alloys. Materials Park: ASM International; 1994.
  • [30] Dorf RC, editor. Handbook of engineering tables. CRC Press LLC, Boca Raton; 2004.
  • [31] Cronin DS, Bui K, Kaufmann C. Implementation and validation of the Johnson-Holmquist ceramic material model in LS-DYNA. In: Proceedings of the 4th European LS-DYNA User Conference (DYNAmore), 2003.
  • [32] Goldsmith A, Waterman TE, Hirchorn HJ. Handbook of thermo-physical properties of solid materials. New York: McMillan; 1961.
  • [33] Slack GA, Bartram SF. Thermal expansion of some diamondlike crystals. J Appl Phys. 1975;46(1):89–988.
  • [34] Slack GA, Tanzilli RA, Pohl RO, Vandersande JW. The intrinsic thermal conductivity of AIN. J Phys Chem Solids. 1987;48(7):641–7.
  • [35] Koshchenko VI, Grinberg YK, Demidenko AF. Thermodynamic properties of AlN (5–2700 K), GaP (5–1500 K) and BP (5–800 K). Neorg Mater. 1984;20(11):1787–90.
  • [36] Moosbrugger Ch, editor., Atlas of stress–strain curves, 2nd ed. Materials Park: ASM, 2002.
  • [37] Bruls RJ, Hintzen HT, de With G, Metselaar R. The temperature dependence of the Young’s modulus of MgSiN2, AlN and Si3N4. J Eur Ceram Soc. 2001;21(3):263–8.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-1f6188b4-e193-4714-9b1c-8933042950bd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.