Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | T. 14, nr 2 | 56--61
Tytuł artykułu

A modified method of spectral analysis of radio signals using the operator approach for the fourier transform

Treść / Zawartość
Warianty tytułu
PL
Zmodyfikowana metoda analizy widmowej sygnałów radiowych z wykorzystaniem podejścia operatorskiego dla transformaty fouriera
Języki publikacji
EN
Abstrakty
EN
The article proposes the improved method of spectral analysis of radio signals. The improvement is achieved due to the use of special operators in the signal conversion process. This allows you to distinguish the signal accurately and to determine its characteristics at the background of many airspace obstacles. The obtained graphical results fully confirm the advantages of the proposed method. The simulation results proved the advantage of the improved method of spectral analysis of radio signals; the advantage is achieved through the usage summing matrix functions in the process of signals conversion. The proposed improved method increases the accuracy of signals detection of secretly obtaining information means by 12%.
PL
W artykule zaproponowano udoskonaloną metodę analizy widmowej sygnałów radiowych. Poprawę osiąga się dzięki zastosowaniu specjalnych operatorów w procesie konwersji sygnału. Pozwala to na dokładne rozróżnienie sygnału i określenie jego charakterystyki na tle wielu przeszkód w przestrzeni powietrznej. Uzyskane wyniki graficzne w pełni potwierdzają zalety proponowanej metody. Wyniki symulacji wykazały przewagę udoskonalonej metody analizy widmowej sygnałów radiowych; zaletę uzyskuje się poprzez wykorzystanie funkcji macierzy sumującej w procesie konwersji sygnałów. Zaproponowana udoskonalona metoda zwiększa o 12% dokładność wykrywania sygnałów tajnego pozyskiwania informacji.
Wydawca

Rocznik
Strony
56--61
Opis fizyczny
Bibliogr. 36 poz., wykr.
Twórcy
  • Taras Shevchenko National University of Kyiv, Department of Integral and Differential Equations, Kyiv, Ukraine, sobchuk@knu.ua
  • Taras Shevchenko National University of Kyiv, Department of Cyber Security and Information Protection, Kyiv, Ukraine, salaptiev@gmail.com
  • Taras Shevchenko National University of Kyiv, Department of Cyber Security and Information Protection, Kyiv, Ukraine, tetiana1986@ukr.net
  • National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Department of Automation of Designing of Energy Processes and Systems, Kyiv, Ukraine, bar64@ukr.net
  • State University of Information and Communication Technologies, Kyiv, Ukraine, odrobik@ukr.net
  • State University of Information and Communication Technologies, Department of Information and Cyber Security, Kyiv, Ukraine, anri.sobchuk@gmail.com
Bibliografia
  • [1] Abdullayev F. G. et al.: Isometry of the Subspaces of Solutions of Systems of Differential Equations to the Spaces of Real Functions. Ukr. Math. J. 71(8), 2020, 1153–1172.
  • [2] Babaeizadeh S.: Interpolation in Digital Signal Processing and Numerical Analysis, 2003.
  • [3] Barabash O. et al.: Unmanned Aerial Vehicles Flight Trajectory Optimisation on the Basis of Variational Enequality Algorithm and Projection Method. IEEE 5th International Conference Actual Problems of Unmanned Aerial Vehicles Developments – APUAVD, 2019, 136–139.
  • [4] Bushev D. et al.: The Use of the Isometry of Function Spaces with Different Numbers of Variables in the Theory of Approximation of Functions. Carpathian Math. Publ. 13(3), 2021, 805–817.
  • [5] Bushev D. N., Kharkevich Y. I.: Finding Solution Subspaces of the Laplace and Heat Equations Isometric to Spaces of Real Functions, and Some of Their Applications. Math. Notes 103(5-6), 2018, 869–880.
  • [6] Kal’chuk I. V., Kharkevych Y. I.: Approximation of the classes by generalized Abel-Poisson integrals. Ukr. Math. J. 74(4), 2022, 575–585.
  • [7] Kal’chuk I., Kharkevych Y.: Approximation Properties of the Generalized Abel-Poisson Integrals on the Weyl-Nagy Classes. Axioms 11 (4), 2022, 161.
  • [8] Kharkevych Y. I.: Approximation Theory and Related Applications. Axioms 12, 2022, 736.
  • [9] Kharkevych Yu. I.: Exact Values of the Approximations of Differentiable Functions by Poisson-Type Integrals. Cybern. Syst. Anal. 59(2), 2023, 274–282.
  • [10] Kharkevych Y. I.: On some asymptotic properties of solutions to biharmonic equations. Cybern. Syst. Anal. 58(2), 2022, 251–258.
  • [11] Kharkevych Yu. I., Khanin O. G.: Asymptotic Properties of the Solutions of Higher-Order Differential Equations on Generalized Hölder Classes. Cybern. Syst. Anal. 59(4), 2023, 633–639.
  • [12] Kharkevych Yu., Stepaniuk T.: Approximate properties of Abel-Poisson integrals on classes of differentiable functions defined by moduli of continuity. Carpathian Math. Publ. 15(1), 2023, 286–294.
  • [13] Kravchenko Y. et al.: Intellectualisation of decision support systems for computer networks: Production-logical F-inference. 7th International Conference "Information Technology and Interactions", CEUR Workshop Proceedings, 2021, 2845, 117–126.
  • [14] Kresin G., Maz’ya V.: Generalized Poisson integral and sharp estimates for harmonic and biharmonic functions in the half-space. Mathematical Modelling of Natural Phenomena 13(4), 2018, 37.
  • [15] Kyrychok R. et al.: Development of a method for checking vulnerabilities of a corporate network using bernstein transformations. Eastern-European Journal of Enterprise Technologies 1(9)(115), 2022, 93–101.
  • [16] Laptiev O. et al.: Development of a Method for Detecting Deviations in the Nature of Traffic from the Elements of the Communication Network. International Scientific and Practical Conference "Information Security and Information Technologies", 2021, 1–9.
  • [17] Laptiev O. et al.: Weierstrass Method of Analogue Signal Approximation. IEEE 4th KhPI Week on Advanced Technology – KhPIWeek, 2023, 1–6.
  • [18] Laptiev O. et al.: Method of Determining Trust and Protection of Personal Data in Social Networks. International Journal of Communication Networks and Information Security – IJCNIS 13(1), 2021, 15–21 [https://www.ijcnis.org/index.php/ijcnis/article/view/4882].
  • [19] Laptiev O. et al.: Method of Detecting Radio Signals using Means of Covert by Obtaining Information on the basis of Random Signals Model. International Journal of Communication Networks and Information Security – IJCNIS 13(1), 2021, 48–54 [https://www.ijcnis.org/index.php/ijcnis/article/view/4902].
  • [20] Laptiev O. et al.: The method of spectral analysis of the determination of random digital signals. International Journal of Communication Networks and Information Security – IJCNIS 13(2), 2021, 271–277.
  • [21] Li X., Zhu J., Zhang S.: A meshless method based on boundary integral equations and radial basis functions for biharmonic-type problems. Applied Mathematical Modelling 35(2), 2011, 737751.
  • [22] Lukova-Chuiko N. et al.: The method detection of radio signals by estimating the parameters signals of eversible Gaussian propagation. IEEE 3rd International Conference on Advanced Trends in Information Theory – ATIT, 2021, 67–70.
  • [23] MacLeod A. J.: The efficient computation of some eneralized exponential integrals. J. Comput. Appl. Math. 148(2), 2002, 363–374.
  • [24] Maloof M. A. et al.: Machine learning and data mining for computer security: methods and applications. Springer-Verlag, London 2006.
  • [25] Ndinechi M. C., Onwuchekwa N., Chukwudebe G. A.: Algorithm for applying interpolation in digital signal processing systems. International Journal of Natural and Applied Sciences 5(2), 2009, 114–119.
  • [26] Petrivskyi V. et al.: Development of a modification of the method for constructing energy-efficient sensor networks using static and dynamic sensors. Eastern-European Journal of Enterprise Technologies 1(9)(115), 2022, 15–23.
  • [27] Pichkur V. et al.: The Method of Managing Man-generated Risks of Critical Infrastructure Systems Based on Ellipsoidal Evaluation. IEEE 4th International Conference on Advanced Trends in Information Theory – ATIT, 2022, 133–137 [https://doi.org/10.1109/ATIT58178.2022.10024244].
  • [28] Pichkur V., Sobchuk V.: Mathematical models and control design of a functionally stable technological process. Journal of Optimization, Differential Equations and Their Applications – JODEA 29(1), 2021, 1–11.
  • [29] Radosevic A. et al.: Bounds on the information rate for sparse channels with long memory and i.u.d. inputs. IEEE Transactions on Communications 59(12), 2011, 3343–3352.
  • [30] Shi Z., Cao Y.: A spectral collocation method based on Haar wavelets for Poisson equations and biharmonic equations. Mathematical and Computer Modelling 54 (11-12), 2011, 2858-2868.
  • [31] Stepanets A. I.: Classification and Approximation of Periodic Functions. Kluwer, Dordrecht 1995.
  • [32] Vaseghi S. V.: Advanced digital signal processing and noise reduction. 3rd ed. Chichester: John Wiley & Sons Ltd., 2006.
  • [33] Zamrii I. et al.: The Method of Increasing the Efficiency of Signal Processing Due to the Use of Harmonic Operators. IEEE 4th International Conference on Advanced Trends in Information Theory – ATIT, 2022, 138–141 [https://doi.org/10.1109/ATIT58178.2022.10024212].
  • [34] Zhyhallo T. V., Kharkevych Y. I.: Fourier Transform of the Summatory Abel-Poisson Function. Cybern. Syst. Anal. 58(6), 2022, 957–965.
  • [35] Zhyhallo T. V., Kharkevych Yu. I.: On approximation of functions from the class by the Abel-Poisson integrals in the integral metric. Carpathian Math. Publ. 14 (1), 2022, 223–229.
  • [36] Zhyhallo T. V., Kharkevych Yu. I.: Some Asymptotic Properties of the Solutions of Laplace Equations in a Unit Disk. Cybern. Syst. Anal. 59(3), 2023, 449–456.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-1f603116-2707-4e19-ae77-34c0673d3514
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.