Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 26, no. 3 | art. no. 187794
Tytuł artykułu

Control of the parameters of the surface layer of steel parts during their processing applying the material homogeneity criterion

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The main goal of the presented research is to assess the technological damageability of the material and use this as a criterion for analyzing the technological route of product machining in the "blank-workpiece-final part" technological chain. This technological chain is examined in detail in the most important stages of the life cycles of mechanical engineering products aiming to take into account the principles of technological inheritability of their characteristics and quality parameters. The technological inheritability of the properties of the surface layers of the made of steel parts of machines and mechanisms during their machining evaluates and predicts the transformation of the structurally heterogeneous material obtained after the production of blanks into the structurally homogeneous material of the final parts. The procedure for evaluating the homogeneity of the processed material for each technological step by the LM hardness method is presented according to the calculated values of the Weibull homogeneity coefficient, material constant, variation coefficient, technological damageability along with corresponding intensity of the expansion. The developed methodology was implemented and proven at the manufacturing process of the conveyor belt drive drum shaft.
Wydawca

Rocznik
Strony
art. no. 187794
Opis fizyczny
Bibliogr. 56 poz., rys., tab.
Twórcy
  • Lviv Polytechnic National University, Department of Robotics and Integrated Mechanical Engineering Technologies, Bandera st. 12, 79013 Lviv, Ukraine, jarkym@ukr.net
  • Lviv Polytechnic National University, Department of Robotics and Integrated Mechanical Engineering Technologies, Bandera st. 12, 79013 Lviv, Ukraine, vadym.v.stupnytskyi@lpnu.ua
  • Lviv Polytechnic National University, Department of Marketing and Logistics, Bandera st. 12, 79013 Lviv, Ukraine, olha.s.kostiuk@lpnu.ua
autor
  • Ivano-Frankivsk National Technical University of Oil and Gas, Department of Computerized Mechanical Engineering, Karpatska st. 15, 76000 Ivano-Frankivsk, Ukraine, onysko.oleg@gmail.com
  • Kaunas University of Technology, Faculty of Mechanical Engineering and Design, Department of Production Engineering, Studentu st. 56, 51424 Kaunas, Lithuania, egidijus.dragasius@ktu.lt
  • Kaunas University of Technology, Faculty of Mechanical Engineering and Design, Department of Production Engineering, Studentu st. 56, 51424 Kaunas, Lithuania, saulius.baskutis@ktu.lt
  • Kielce University of Technology, Faculty of Mechatronics and Mechanical Engineering, Department of Mechatronics and Weapon Engineering, al. Tysiąclecia Panstwa Polskiego 7, 25-314 Kielce, Poland, chatys@tu.kielce.pl
Bibliografia
  • 1. Abdelbary A. Extreme Tribology. Fundamentals and Challenges, 1st ed., CRC Press 2021; 332p, https://doi.org/10.1201/9780429448867-1
  • 2. Abrão AM, Ribeiro JLS, Davim JP. Surface Integrity. In: Davim, J. (eds) Machining of Hard Materials. Springer-Verlag, London 2011; 115-141, https://doi.org/10.1007/978-1-84996-450-0_4.
  • 3. Aftanaziv IS, Shevchuk LI, Strutynska LR, Strogan OI.Vibrational-centrifugal surface strengthening of drill and casing pipes.Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu 2018; 5: 88–97, DOI: 10.29202/nvngu/2018-5/7.
  • 4. Andrych-Zalewska M, Chlopek Z, Pielecha J, Merkisz J. Investigation of exhaust emissions from the gasoline engine of a light duty vehicle in the Real Driving Emissions test. Eksploatacja i Niezawodność – Maintenance and Reliability 2023; 25(2), https://doi.org/10.17531/ein/165880.
  • 5. Bazaluk O, Dubei O, Ropyak L, Shovkoplias M, Pryhorovska T, Lozynskyi V. Strategy of compatible use of jet and plunger pump with chrome parts in oil well. Energies 2022; 15(1): 83, https://doi.org/10.3390/en15010083.
  • 6. Bazaluk O, Velychkovych A, Ropyak L, Pashechko M, Pryhorovska T, Lozynskyi V. Influence of heavy weight drill pipe material and drill bit manufacturing errors on stress state of steel blades. Energies 2021; 14(14): 4198, https://doi.org/10.3390/en14144198.
  • 7. Bembenek M, Prysyazhnyuk P, Shihab T, Machnik R, Ivanov O, Ropyak L. Microstructure and wear characterization of the Fe-Mo-B-C—based hardfacing alloys deposited by flux-cored arc welding. Materials 2022; 15(14): 5074, https://doi.org/10.3390/ma15145074.
  • 8. Bertsche B. Reliability in Automotive and Mechanical Engineering. Berlin Heidelberg: Springer-Verlag 2008; 492p, https://doi. org/10.1007/978-3-540-34282-3.
  • 9. Birolin, A. Quality and Reliability of Technical Systems: Theory, Practice, Management. 2nd Edition. Springer-Verlag Berlin Heidelberg GmbH 1997; 502p, https://doi.org/10.1007/978-3-642-97983-5.
  • 10. Borucka A. Three-state Markov model of using transport means, Business Logistics in Modern Management, 2018; 18, 3-19, ISSN 1849-5931.
  • 11. Demminger C, Mozgova I, Quirico M, Uhlich F, Denkena B, Lachmayer R, Nyhuis P. The consept of technical inheritance in operation: Analysis of the information flow in the life cycle of smart product. Procedia Technology 2016; 26: 79-88, doi:10.1016/j.protcy.2016.08.012.
  • 12. Denkena B, Mörke T, Krüger M, Schmidt J, Boujnah H, Meyer J, Gottwald P, Spitschan B, Winkens M. Development and first applications of gentelligent components over their lifecycle. CIRP Journal of Manufacturing Science and Technology 2014; 7(2): 139-150, https://doi.org/10.1016/j.cirpj.2013.12.006.
  • 13. Grzesik W. Prediction of the functional performance of machined components based on surface topography: State of the art. Journal of Materials Engineering and Performance 2016; 25: 4460–4468, https://doi.org/10.1007/s11665-016-2293-z.
  • 14. Hagen J, Buth L, Haupt J, Cerdas F, Herrmann C. Live LCA in learning factories: real time assessment of product life cycles environmental impacts. Procedia Manufacturing 2020; 45: 128-133, 10.1016/j.promfg.2020.04.083.
  • 15. Haque MS, Stewart CM. Comparative analysis of the sin-hyperbolic and Kachanov-Rabotnov creep damage models. International Journal of Pressure Vessels and Piping 2019; 171: 1-9, https://doi.org/10.1016/j.ijpvp.2019.02.001.
  • 16. Hashemi SH. Strength-hardness statistical correlation in API X65 steel. Materials Science & Engineering A 2011; 528(3): 1648-1655, https://doi.org/10.1016/j.msea.2010.10.089.
  • 17. Hubka V,Eder WE. Theory of Technical Systems: A Total Concept Theory for Engineering Design. Springer-Verlag, New York 1988; 278p, http://dx.doi.org/10.1007/978-3-642-52121-8.
  • 18. Ivanov V, Dehtiarov I, Pavlenko I, Kosov M, Hatala M. Technological Assurance and Features of Fork-Type Parts Machining. In: et al. Advances in Design, Simulation and Manufacturing II. DSMIE 2019. Lecture Notes in Mechanical Engineering. Springer, Cham 2020; 114-125, doi: 10.1007/978-3-030-22365-6_12.
  • 19. Ivanov V, Dehtiarov I, Pavlenko I, Kosov I, Kosov M. Technology for complex parts machining in multiproduct manufacturing. Management and Production Engineering Review 2019; 10(2): 25-36, DOI: 10.24425/mper.2019.129566
  • 20. Kachanov LM. Rupture time under creep conditions. International Journal of Fracture 1999; 97: 11-18, https://doi.org/10.1023/A:1018671022008.
  • 21. Khadem M, Penko, O V, Yang H-K, Kim D-E. Tribology of multilayer coatings for wear reduction: A review. Friction 2017; 5(3): 248–262, https://doi.org/10.1007/s40544-017-0181-7.
  • 22. Kharchenko VV, Katok OA, Kravchuk RV, Sereda AV, Shvets VP. Analysis of the methods for determination of strength characteristics of NPP main equipment metal from the results of hardness and indentation measurements. Procedia Structural Integrity 2022; 36: 59-65, 10.1016/j.prostr.2022.01.003.
  • 23. Khonsari MM, Booser EM. Applied Tribology: Bearing Design and Lubrication (Tribology in Practice Series), 3rd ed. Wiley 2017; 672p., https://doi.org/10.1007/978-0-85729-694-8
  • 24. Kołowrocki K, Soszynska-Budny J. Reliability and Safety of Complex Technical Systems and Processes: Modeling—Identification—Prediction— Optimization. Springer-Verlag, London Limited 2011; 419p.
  • 25. Kopei V, Onysko O, Odosii Z, Pituley L, Goroshko A. Investigation of the influence of tapered thread profile accuracy on the mechanical stress, fatigue safety factor and contact pressure. In: Karabegovič, I. (ed) New Technologies, Development and Applications IV, Lecture Notes in Networks and Systems, vol 233. Springer Publishing 2021; 177-185, DOI: 10.1007/978-3-030-75275-0_21.
  • 26. Kopylov V, Kuzin O, Kuzin N. Improving contact durability of polycryctalline systems by controlling the parameters of large-angle grain boundaries. Eastern-European Journal of enterprise technologies 2019; 5/12(101): 14-22, https://doi.org/10.15587/1729-4061.2019.181441.
  • 27. Kozłowski E, Borucka A, Świderski A, Skoczyński P. Classification Trees in the Assessment of the Road–Railway Accidents Mortality. Energies 2021; 14(12):3462, https://doi.org/10.3390/en14123462.
  • 28. Kragelsky IV, Alisin VV. Tribology -Lubrication, Friction, and Wear. Tribology in Practice Series, 1st ed. John Wiley & Sons Ltd 2005; 948p.
  • 29. Krimpenis A,Vosniakos G.-C. Rough milling optimisation for parts with sculptured surfaces using genetic algorithms in a Stackelberg game. Journal of Intelligent Manufacturing 2009; 20: 447-461, DOI 10.1007/s10845-008-0147-8.
  • 30. Kusyi Y, Stupnytskyy V, Onysko O, Dragašius E, Baskutis S, Chatys, R. Optimization synthesis of technological parameters during manufacturing of the parts. Eksploatacja i Niezawodność – Maintenance and Reliability 2022; 24(4): 655–667, https://doi.org/10.17531/ein.2022.4.6
  • 31. Kusyi Y,M, Kuk AM. Investigation of the technological damageability of castings at the stage of design and technological preparation of the machine Life Cycle. Journal of Physics: Conference Series 2020; 1426(1): 012034, DOI: 10.1088/1742-6596/1426/1/012034.
  • 32. Kwak K, Mine Y, Morito S, Ohmura T, Takashima K. Correlation between strength and hardness for substructures of lath martensite in low- and medium-carbon steels. Materials Science & Engineering A 2022; 856: 144007, https://doi.org/10.1016/j.msea.2022.144007.
  • 33. Kuzin N, Meshcheryakova T, Kuzin O, Kurileva E, Gordinskaya N. The use of mathematical and computer modeling in solving the problems of rail transport expert examination. Journal of Applied Mathematics and Computational Mechanics 2016; 15(4): 93-98, DOI: 10.17512/jamcm.2016.4.10.
  • 34. Latinovic T, Barz C, Vadean AP, Sikanjic G, Sikman L. Adaptive intelligence system for a predictive process for the Industry 4.0 in Tobacco factory. Journal of Physics: Conference Series 2020; 1426: 012019, DOI:10.1088/1742-6596/1426/1/012019.
  • 35. Latinovic T, Preradović D, Barz CR, Vadean AP, Todić M. Big Data as the basis for the innovative development strategy of the Industry 4.0. IOP Conf. Series: Materials Science and Engineering 2019; 477:012045, doi:10.1088/1757-899X/477/1/012045.
  • 36. Lebedev AA, Makovetskii IV, Muzyka NR, Volchek NL, Shvets VP.Assesment of damage level in materials by the scatter of elastic characteristics and static strength. Strength of Materials 2006; 38(2):109-116, https://doi.org/10.1007/s11223-006-0022-9.
  • 37. Lee H-h, Lee S, Park J-K, Yang M. Friction and wear characteristics of surface-modified titanium alloy for metal-on-metal hip joint bearing. International Journal of Precision Engineering and Manufacturing 2018; 19(6): 917–924,10.1007/s12541-018-0108-x.
  • 38. Montinaro N, Cerniglia D, Pitarresi G. Defect detection in additively manufactured titanium prosthesis by flying laser scanning thermography. Procedia Structural Integrity 2018; 12: 165-172, DOI: 10.1016/j.prostr.2018.11.098.
  • 39. Mozgova, I, Barton S, Demminger C, Miebach T, Taptimthong P, Lachmaye, R, Nyhuis P, Reimche W, Wurz MC. Technical inheritance: Information basis for the identification and development of product generations. In: Maier, A. et al. (eds). Proceedings of the 21st International Conference on Engineering Design (ICED17), Vancouver, Canada, 21-25 August, 2017; 6: 91-100.
  • 40. Murakami S. Continuum Damage Mechanics: A Continuum Mechanics Approach to the Analysis of Damage and Fracture. Springer, Dordrecht/Heidelberg/London/New York 2012; 432p.
  • 41. Muzyka NR, Shvets VP, Boiko AV. Procedure and instruments for the material damage assessment by the LM-Hardness method on the in-service scratching of structure element surfaces. Strength of Materials 2020; 52(3):432-439,DOI 10.1007/s11223-020-00195-6.
  • 42. Orman LJ. Enhancement of pool boiling heat transfer with pin-fit microstructures, Journal of Enhanced Heat Transfer 2016; 23(2), 137-153, DOI: 10.1615/JEnhHeatTransf.2017019452
  • 43. Orman LJ. Boiling heat transfer on meshed surfaces of different aperture, Proc. of Int. Conf. on Application of Experimental and Numerical Methods in Fluid Mechanics and Energetics. AIP Conference Proceedings 2014; 1608; 169-172. DOI: 10.1063/1.4892728
  • 44. Panda S, Sarangi M, Roy Chowdhury SK. An analytical model of mechanistic wear of polymers. Journal of Tribology 2018; 140(1): 011609, https://doi.org/10.1115/1.4037136
  • 45. Papagianni Z, Vosniakos, G.-C.2022. Surface defects detection on pressure die Castings by machine learning exploiting machine vision features. In et al. Advances in Design, Simulation and Manufacturing V, Lecture Notes in Mechanical Engineering. Springer International Publishing 2022; 51–61, DOI: https://doi.org/10.1007/978-3-031-06025-0_6.
  • 46. Pryhorovska T, Ropyak L. Machining error influence on stress state of conical thread joint details, Proceedings of the 8th International Conference on Advanced Optoelectronics and Lasers (CAOL) 2019; 493-497, 10.1109/CAOL46282.2019.9019544.
  • 47. Psarommatis F, May G. A practical guide for implementing Zero Defect Manufacturing in new or existing manufacturing systems. Procedia Computer Science 2023; 217: 82-90, 10.1016/j.procs.2022.12.204.
  • 48. Ropyak LY, Makoviichuk MV, Shatskyi IP, Pritula IM, Gryn LO, Belyakovskyi VO. Stressed state of laminated interference-absorption filter under local loading, Functional Materials 2020; 27(3): 638-642, doi: https://doi.org/10.15407/fm27.03.638.
  • 49. Ropyak LY, Pryhorovska TO, Levchuk KH. Analysis of materials and modern technologies for PDC drill bit manufacturing. Progress in Physics of Metals 2020; 21(2): 274–301, DOI: 10.15407/ufm.21.02.274.
  • 50. Ropyak LY, Velychkovych AS, Vytvytskyi, VS, Shovkoplias MV. 2021. Analytical study of „crosshead - slide rail“ wear effect on pump rod stress state. Journal of Physics: Conference Series 2021; 1741(1): 012039, DOI: 10.1088/1742-6596/1741/1/012039.
  • 51. Shihab T, Prysyazhnyuk P, Semyanyk I, Anrusyshyn R, Ivanov O, Troshchuk L. 2020. Thermodynamic approach to the development and selection of hardfacing materials in energy industry. Management Systems in Production Engineering 2020; 28(2): 84-89, https://doi.org/10.2478/mspe-2020-0013.
  • 52. Shvets’ VP, Muzyka MR, Makovets’kyi IV, Bulakh PO. In-service monitoring of the current switch metal condition. Strenght of Materials 2011; 43(1): 73-76, https://doi.org/10.1007/s11223-011-9269-x.
  • 53. Stupnytskyy V. Features of functionally-oriented engineering technologies in concurrent environment. International Journal of Engineering Research & Technology 2013; 02(09): 1181–1186, DOI: 10.17577/IJERTV2IS90435.
  • 54. Szymczak T, Kowalewski ZL. Strength tests of polymer-glass composite to evaluate its operational suitability for ballistic shield plates. Eksploatacja i Niezawodność – Maintenance and Reliability 2020; 22(4): 592-600, http://dx.doi.org/10.17531/ein.2020.4.2.
  • 55. Vlagkoulis D, Vasileiou A, Vosniakos G.-C.A study on casting of structural mesh-like metal parts. IOP Conf. Series: Materials Science and Engineering 2021; 1037:012017, DOI 10.1088/1757-899X/1037/1/012017.
  • 56. Zhang X, Hao Y, Shangguan H, Zhang P, Wang A. Detection of surface defects on solar cells by fusing Multi-channel convolution neural networks. Infrared Physics and Technology 2020; 108: 103334, https://doi.org/10.1016/j.infrared.2020.103334.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-1f4cd921-0846-4a23-b2f6-b9cead8bfc7c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.