Czasopismo
2023
|
Vol. 41, No. 4
|
1--12
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
Gelatins from camel, bovine, and fish bones were successfully extracted by using chemical pretreatment and heating methods. The bones were demineralized for 3 days at ambient temperature using hydrochloric acid solutions (0.5–1 M), and the collagen was partially hydrolyzed by preheating in distilled water at 75–80°C for 3 h, followed by extraction temperature at 90°C for 1 h. Free-standing films of gelatin entrained with silver nanoparticles (Gel/AgNPs) at low concentrations (1.25, 2.5, and 5 mM) were synthesized as radiation dosimeters. A high-energy ultrasonic homogenizer was used to dissolve the gelatin in distilled water and to disperse the AgNPs in the gelatin. The nanocomposites’ morphology and crystallinity were investigated using scanning electron microscopy (SEM), optical absorption, and Fourier transform infrared (FTIR) spectroscopies. Dose enhancement was assessed using X-ray irradiations with beam energies below and above silver K-edge. The beam was configured by setting the X-ray generator at 15, 25.5, and 35 kV potential and a beam current of 1 mA. An X-ray detector is used to detect the number of electrons after passing through Gel/AgNPs samples. The use of AgNPs embedded in gelatin caused the enhancement of X-ray radiation absorption, and the highest percentage of linearity for the dosimeter was found to be 90% in the optical range of 395 nm to 425 nm. The preliminary results demonstrated that Gel/AgNPs material may be used in radiation dosimetry for low-energy radiotherapy sources.
Czasopismo
Rocznik
Tom
Strony
1--12
Opis fizyczny
Bibliogr. 49 poz., rys.
Twórcy
autor
- Department of Physics, Faculty of Science, University of Tabuk, 71491 Saudi Arabia
autor
- Department of Physics, Faculty of Science, University of Tabuk, 71491 Saudi Arabia
autor
- King Abdulaziz Model Schools, Tabuk 47911, Saudi Arabia
autor
- Department of Physics, Faculty of Science, University of Tabuk, 71491 Saudi Arabia, nbadi@ut.edu.sa
autor
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
autor
- Department of Physics, Faculty of Science, University of Tabuk, 71491 Saudi Arabia
autor
- Department of Physics, Faculty of Science, University of Tabuk, 71491 Saudi Arabia
- Physics Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Nanotechnology, King Abdulaziz University, Jeddah, Saudi Arabia
autor
- Physics Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Nanotechnology, King Abdulaziz University, Jeddah, Saudi Arabia
Bibliografia
- [1] Macchione MA, Lechón Páez S, Strumia MC, Valente M, Mattea F. Chemical overview of gel dosimetry systems: a comprehensive review. Gels. 2022;8(10):663.
- [2] Azadeh P, Amiri S, Mostaar A, Joybari AY, Paydar R. Evaluation of MAGIC-f polymer gel dosimeter for dose profile measurement in small fields and stereotactic irradiation. Radiat Phys Chem. 2022;194:109991.
- [3] Kron T, Metcalfe P, Pope JM. Investigation of the tissue equivalence of gels used for NMR dosimetry. Phys Med Biol. 1993;38:139–50.
- [4] Al-Kahtani HA, Jaswir I, Ismail EA, Ahmed MA, Monsur Hammed A, Olorunnisola S, Octavianti F. Structural characteristics of camel-bone gelatin by demineralization and extraction. Int J Food Prop. 2017;20:11.
- [5] Al-Hassan AA, Abdel-Salam AM, Al Nasiri F, Mousa HM, Nafchi AMM. J Food Meas Charact. 2021;15:4542–51.
- [6] Ahmed MA, Al-Kahtani HA, Jaswir I, AbuTarboush H, Ismail EA. Extraction and characterization of gelatin from camel skin (potential halal gelatin) and production of gelatin nanoparticles. Saudi J Biol Sci. 2020;27(6):1596–601.
- [7] Chan MF, Ayyangar K. Verification of water equivalence of FeMRI gel using Monte Carlo simulation. Med Phys. 1995;22(4):475–8.
- [8] Keall P, Baldock C. A theoretical study of the radiological properties and water equivalence of Fricke and polymer gels used for radiation dosimetry. Australas Phys Eng.Sci Med. 1999;22:85–91.
- [9] Schreiner LJ. Review of Fricke cel dosimeters. J Phys Conf Ser. 2004;3:9–21.
- [10] De Deene Y, Hurley C, Venning A, Vergote K, Mather M, Healy B, et al. A basic study of some normoxic polymer gel dosimeters. Phys Med Biol. 2002;47(19):3441–63.
- [11] Gustavsson H, Bäck SÅJ, Medin J, Grusell E, Olsson LE. Linear energy transfer dependence of a normoxic polymer gel dosimeter investigated using proton beam absorbed dose measurements. Phys Med Biol. 2004;49(17):3847–55.
- [12] De Deene Y. Radiation dosimetry by use of radiosensitive hydrogels and polymers: mechanisms, state-of-the-art and perspective from 3D to 4D. Gels. 2022;8:599.
- [13] Zhang P, Jiang L, Chen H, Hu L. Recent advances in hydrogel-based sensors responding to ionizing radiation. Gels. 2022;8:238.
- [14] Nezhad ZA, Geraily G. A review study on application of gel dosimeters in low energy radiation dosimetry. Appl Radiat Isot. 2022;179:110015.
- [15] Gayol G, Malano F, Montenovo CR, Pérez P, Valente M. Dosimetry effects due to the presence of Fe nanoparticles for potential combination of hyperthermic cancer treatment with MRI-based image-guided radiotherapy. Int J Molec Sci. 2023;24(1):514.
- [16] Soliman YS, Tadros SM, Beshir WB, Saad GR, Gallo S, Ali LI, Naoum MM. Study of Ag nanoparticles in a polyacrylamide hydrogel dosimeters by optical technique. Gels 2022;.8(4):222.
- [17] Sofi MA, Sunitha S, Sofi MA, Khadheer Pasha SK, Choi D. An overview of antimicrobial and anticancer potential of silver nanoparticles. J King Saud Univ – Sci. 2022;34(2): 101791.
- [18] Kortov V. Materials for thermoluminescent dosimetry: current status and future trends. Radiat Meas. 2007;42:576–81.
- [19] Kron T. Thermoluminescence dosimetry and its applications in medicine–Part 1: physics, materials and equipment. Australas Phys Eng Sci Med. 1994;17:175–99.
- [20] Kry SF, Alvarez P, Cygler JE, DeWerd LA, Howell RM, Meeks S, et al. AAPM TG 191: clinical use of luminescent dosimeters: TLDs and OSLDs. Med Phys. 2020;47:e19–e51.
- [21] Lye J, Dunn L, Kenny J, Lehmann J, Kron T, Oliver C, et al. Remote auditing of radiotherapy facilities using optically stimulated luminescence dosimeters. Med Phys. 2014;41:032102.
- [22] Poirier Y, Kuznetsova S, Villarreal-Barajas JE. Characterization of nanodot optically stimulated luminescence detectors and high-sensitivity MCP-N thermoluminescent detectors in the 40–300 kVp energy range. Med Phys. 2018;45:402–13.
- [23] Damulira E, Yusoff MNS, Omar AF, Mohd Taib NH. A review: photonic devices used for dosimetry in medical radiation. Sensors. 2010;19:2226.
- [24] Inoue K, Yamaguchi I, Natsuhori M. Low-dose radiation effects on animals and ecosystems. In: Fukumoto M, editor. Preliminary study on electron spin resonance dosimetry using affected cattle teeth due to the Fukushima Daiichi nuclear power plant accident. Singapore: Springer, 2020.
- [25] Kinoshita A, Baffa O, Mascarenhas S. Electron spin resonance (ESR) dose measurement in bone of Hiroshima A-bomb victim. PLoS ONE 2018;13:e0192444.
- [26] Klein JS, Sun C, Pratx G. Radioluminescence in biomedicine: physics, applications, and models. Phys Med Biol. 2019;64:04TR01.
- [27] Petisiwaveth P, Wanotayan R, Damrongkijudom N, Ninlaphruk S, Kladsomboon, S. Dosimetric performance of poly(vinyl alcohol)/silver nanoparticles hybrid nanomaterials for colorimetric sensing of gamma radiation. Nanomaterials 2022;12(7):1088.
- [28] Titus D, Samuel EJJ, Srinivasan K, Roopan SM, Madhu CS. Silver nitrate-based gel dosimeter. J Phys: Conference Series. 847 012066.
- [29] Vedelago J, Mattea F, Valente M. Integration of Fricke gel dosimetry with Ag nanoparticles for experimental dose enhancement determination in theranostics, Appl Radiat Isot. 2018;141:182–6.
- [30] Badi N, Mekala R, Khasim S, Roy AS, Ignatiev A. Enhanced dielectric performance in PVDF/Al-Al2O3 core-shell nanocomposites. J Mater Sci: Mater Electron. 2018;29:10593–9.
- [31] Wong C. Polymers for electronic and photonic application. Amsterdam: Elsevier; 2013.
- [32] Nafee SS, Hamdalla TA, Shaheen SA. FTIR and optical properties for irradiated PVA–GdCl3 and its possible use in dosimetry. Phase Transit. 2017;90:439.
- [33] Rashad M, Hanafy TA, Issa SAM. Structural, electrical and radiation shielding properties of polyvinyl alcohol doped with different nanoparticles. J Mater Sci—Mater Electron. 2020;31:15192.
- [34] Al Misned G, Akman F, AbuShanab WS, Tekin HO, Kaçal MR, Issa SAM, et al. Novel Cu/Zn reinforced polymer composites: experimental characterization for radiation protection efficiency (RPE) and shielding properties for alpha, proton, neutron, and gamma radiations. Polymers. 2021;13:3157.
- [35] Abdalsalam AH, Sakar E, Kaky KM, Mhareb MHA, Sakar BC, Sayyed MI, Gürol A. Investigation of gamma ray attenuation features of bismuth oxide nano powder reinforced high-density polyethylene matrix composites. Radiat Phys Chem. 2020;168:108537.
- [36] Akman F, Kaçal MR, Almousa N, Sayyed MI, Polat H. Gamma-ray attenuation parameters for polymer composites reinforced with BaTiO3 and CaWO4 compounds. Prog Nucl Energy. 2020;121:103257.
- [37] Hamdalla TA, Nafee SS. Bragg wavelength shift for irradiated polymer fiber Bragg grating. Opt Laser Technol. 2017;74:167.
- [38] Pai S, Das IJ, Dempsey JF, Lam KL, Losasso TJ, Olch AJ, et al. TG-69: radiographic film for megavoltage beam dosimetry. Med Phys. 2007;34:2228.
- [39] Hassan N, Ahmad T, Zain NM, Awang SR. Identification of bovine, porcine and fish gelatin signatures using chemometrics fuzzy graph method. Sci Rep. 2021;11:9793.
- [40] Hashim DM, Che Man YB, Norakasha R, Shuhaimi M, Salmah Y, Syahariza ZA. Potential use of Fourier transform infrared spectroscopy for differentiation of bovine and porcine gelatins. Food Chem. 2010;118(3):856–60.
- [41] Zilhadia KF, Betha OS, Supandi S. Diferensiasi gelatin sapi dan gelatin babi pada gummy vitamin C nmenggunakan methode kombinasi spektroskopi Fourier transform infrared (FTIR) dan principal component analysis (PCA). Pharm Sci Res. 2018;5(2):90–6.
- [42] Barth A. Infrared spectroscopy of proteins. Biochim Biophys Acta (BBA)-Bioenerg. 2007;1767:1073–101.
- [43] Al-Hassan AA, Abdel-Salam A.M, Al Nasiri F, Mousa HM, Nafch AM. Extraction and characterization of gelatin developed from camel bones. J Food Meas Charact. 2021;15:4542–51.
- [44] Al-Kahtani HA, Jaswir I, Ismail EA, Ahmed MA, Hammed AM, Olorunnisola S, Octavianti F. Structural characteristics of camel-bone gelatin by demineralization and extraction. Int J Food Prop. 2017;20:2559–68.
- [45] Fawale OS, Abuibaid A, Hamed F, Kittiphattanabawon P, Maqsood S. Molecular, structural, and rheological characterization of camel skin gelatin extracted using different pretreatment conditions. Foods. 2021;10: 1563.
- [46] Kong J, Yu S. Fourier transform infrared spectroscopic analysis of protein secondary structures. Acta Biochim Biophys Sin. 2007;39:549–59.
- [47] Nur Hanani ZA, Roos YH, Kerry JP. Fourier transform infrared (FTIR) spectroscopic analysis of biodegradable gelatin films immersed in water. Int Congr Eng Food, Proc. 2011.
- [48] Alim-Al-Razy M, Bayazid GMA, Rahman RU, Bosu R, Shamma SS. Silver nanoparticle synthesis, UV-Vis spectroscopy to find particle size and measure resistance of colloidal solution. J Phys. 2020;1706:012020.
- [49] Fuliful F, Hashim A, Madlool R. Calculating the X-ray attenuation coefficients of gelatin as human tissue substitute. Austral J Basic Appl Sci. 2017;11:21.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-1f338201-3368-489c-b73c-cfd459de5c6b