Czasopismo
2023
|
No. 65 (2)
|
333--342
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
The appearance of internal solitary waves (ISWs) in the Maluku Sea is often captured by satellite imagery. However, no study has revealed details on this phenomenon to date. Here, the characteristics of such ISWs were investigated based on their appearance in synthetic aperture radar (SAR) imagery on 20 February 2015. Two different sources of ISW packets were observed: one packet propagating from the Lifamatola Passage and another from the Sangihe Passage. The vertical structure of the waves was constructed using the Korteweg-de Vries (KdV) model, which suggests an average phase speed of ∼2.8 and 2.7 m s−1 for the first and the second sources, respectively. ISWs originating from the first source had a typical amplitude of O(80 m), while those from the second source were characterized by a lower amplitude of O(40 m). The waves generated horizontal and vertical currents with typical magnitudes of O(1 m s−1) and O(10 cm s−1) for the first source and O(0.6 m s−1) and O(4 cm s−1) for the second source, respectively. The mean energy densities of the first and second sources reached 461 MJ m−1 and 185 MJ m−1, respectively. Single leading solitary wave contained a fraction of approximately 20% and 15% of the baroclinic tidal energy generated in the Lifamatola Passage and Sangihe Passage, respectively.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
333--342
Opis fizyczny
Bibliogr. 57 poz., rys., tab., wykr.
Twórcy
autor
- Research Center for Oceanography, National Research and Innovation Agency (RCO-BRIN), Jakarta, Indonesia
autor
- Laboratory of Oceanography and Climatology via Experimentation and Numerical Approach (LOCEAN), Sorbonne University, Paris, France
Bibliografia
- 1. Aiki, H., Matthews, J.P., Lamb, K.G., 2011. Modeling and energetics of tidally generated wave trains in the Lombok Strait: Impact of the Indonesian Throughflow. J. Geophys. Res.-Oceans 116. https://doi.org/10.1029/2010JC006589
- 2. Alford, M.H., Peacock, T., Mackinnon, J.A., Nash, J.D., Buijsman, M.C., Centuroni, L.R., Chao, S.Y., Chang, M.H., Farmer, D.M., Fringer, O.B., Fu, K.H., Gallacher, P.C., Graber, H.C., Helfrich, K.R., Jachec, S.M., Jackson, C.R., Klymak, J.M., Ko, D.S., Jan, S., Johnston, T.M.S., Legg, S., Lee, I.H., Lien, R.C., Mercier, M.J., Moum, J.N., Musgrave, R., Park, J.H., Pickering, A.I., Pinkel, R., Rainville, L., Ramp, S.R., Rudnick, D.L., Sarkar, S., Scotti, A., Simmons, H.L., St Laurent, L.C., Venayagamoorthy, S.K., Wang, Y.H., Wang, J., Yang, Y.J., Paluszkiewicz, T., Tang, T.Y., 2015. The formation and fate of internal waves in the South China Sea. Nature 521, 65-69. https://doi.org/10.1038/nature14399
- 3. Baines, P.G., 1982. On internal tide generation models. Deep Sea Res. Pt. A 29, 307-338. https://doi.org/10.1016/0198-0149(82) 90098-X
- 4. Bourgault, D., Blokhina, M.D., Mirshak, R., Kelley, D.E., 2007. Evolution of a shoaling internal solitary wavetrain. Geophys. Res. Lett. 34, 1-5. https://doi.org/10.1029/2006GL028462
- 5. Bourgault, D., Galbraith, P.S., Chavanne, C., 2016. Generation of internal solitary waves by frontally forced intrusions in geophysical flows. Nat. Commun. 7. https://doi.org/10.1038/ncomms13606
- 6. Bourgault, D., Morsilli, M., Richards, C., Neumeier, U., Kelley, D.E., 2014. Sediment resuspension and nepheloid layers induced by long internal solitary waves shoaling orthogonally on uniform slopes. Cont. Shelf Res. 72, 21-33. https://doi.org/10.1016/j. csr.2013.10.019
- 7. Bouruet-Aubertot, P., Cuypers, Y., Ferron, B., Dausse, D., Ménage, O., Atmadipoera, A., Jaya, I., 2018. Contrasted turbulence intensities in the Indonesian Throughflow: a challenge for parameterizing energy dissipation rate. Ocean Dyn. 68, 779- 800. https://doi.org/10.1007/s10236-018-1159-3
- 8. Cai, S., Xu, J., Liu, J., Chen, Z., Xie, J., Li, J., He, Y., 2015. Retrieval of the maximum horizontal current speed induced by ocean internal solitary waves from low resolution time series mooring data based on the KdV theory. Ocean Eng. 94, 88-93. https://doi.org/10.1016/j.oceaneng.2014.11.023
- 9. Chonnaniyah, Karang, I.W.G.A., Osawa, T., 2021. Internal solitary waves propagation speed estimation in the northern-part of Lombok Strait observed by Sentinel-1 SAR and Himawari-8 images. IOP Conf. Ser. Earth Environ. Sci. 944. https://doi.org/10. 1088/1755-1315/944/1/012042
- 10. Cui, J., Dong, S., Wang, Z., Han, X., Yu, M., 2019. Experimental research on internal solitary waves interacting with moored floating structures. Mar. Struct. 67, 102641. https://doi.org/10. 1016/j.marstruc.2019.102641
- 11. Dong, M.S., Tian, X.F., Yuan, Z., Fei, T., 2016. Vibration Control of the Submerged Floating Tunnel under Combined effect of Internal Wave and Ocean Current. Procedia Eng. 166, 160-170. https://doi.org/10.1016/j.proeng.2016.11.579
- 12. Egbert, G.D., Erofeeva, S.Y., 2002. Efficient Inverse Modeling of Barotropic Ocean Tides. J. Atmos. Ocean. Technol. 19, 183-204. https://doi.org/10.1175/1520-0426(2002)0192.0.CO;2
- 13. Firdaus, R., Manik, H.M., Atmadipoera, A.S., Zuraida, R., Purwanto, R., 2021. Imaging thermohaline fine structure using multichannel seismic reflection in the northern Maluku Sea. J. Ilmu dan Teknol. Kelaut. Trop. 13, 151-162. https://doi.org/10.29244/jitkt.v13i1.32346
- 14. Gerkema, T., 1996. A unified model for the generation and fission of internal tides in a rotating ocean. J. Mar. Res. 54, 421-450. https://doi.org/10.1357/0022240963213574
- 15. Gong, Y., Xie, J., Xu, J., Chen, Z., He, Y., Cai, S., 2021. Oceanic internal solitary waves at the Indonesian submarine wreckage site. Acta Oceanol. Sin. 41, 1-5. https://doi.org/10.1007/s13131-021-1893-0
- 16. Helfrich, K.R., 1992. Internal solitary shoaling and breaking on a uniform slope. J. Fluid Mech. 243, 133-154. https://doi.org/10.1017/S0022112092002660
- 17. Holloway, P., Pelinovsky, E., Talipova, T., Barnes, B., 1997. A nonlinear model of internal tide transformation on the Australian North West Shelf. J. Phys. Oceanogr. 27, 871-896. https://doi.org/10.1175/1520-0485(1997)0272.0.CO;2
- 18. Hosegood, P., Van Haren, H., 2004. Near-bed solibores over the continental slope in the Faeroe-Shetland Channel. Deep. Res. Pt. II Top. Stud. Oceanogr. 51, 2943-2971. https://doi.org/10.1016/j.dsr2.2004.09.016
- 19. Jackson, C., 2007. Internal wave detection using the Moderate Resolution Imaging Spectroradiometer (MODIS). J. Geophys. Res. 112, C11012. https://doi.org/10.1029/2007JC004220
- 20. Karang, I.W.G.A., Chonnaniyah, Osawa, T., 2020. Internal solitary wave observations in the Flores Sea using the Himawari8 geostationary satellite. Int. J. Remote Sens. 41, 5726-5742. https://doi.org/10.1080/01431161.2019.1693079
- 21. Karang, I.W.G.A., Nishio, F., Mitnik, L., Osawa, T., 2012. Spatial Temporal Distribution and Characteristics of Internal Waves in the Lombok Strait Area Studied by Alos-Palsar Images. Earth Sci. Res. 1, 11-22. https://doi.org/10.5539/esr.v1n2p11
- 22. Klymak, J.M., Pinkel, R., Liu, C.T., Liu, A.K., David, L., 2006. Prototypical solitons in the South China Sea. Geophys. Res. Lett. 33, 5-8. https://doi.org/10.1029/2006GL025932
- 23. La Forgia, G., Adduce, C., Falcini, F., Paola, C., 2019. Migrating Bedforms Generated by Solitary Waves. Geophys. Res. Lett. 46, 4738-4746. https://doi.org/10.1029/2019GL082511
- 24. La Forgia, G., Tokyay, T., Adduce, C., Constantinescu, G., 2020. Bed shear stress and sediment entrainment potential for breaking of internal solitary waves. Adv. Water Resour. 135, 103475. https://doi.org/10.1016/j.advwatres.2019.103475
- 25. Lindsey, D.T., Nam, S.H., Miller, S.D., 2018. Tracking oceanic nonlinear internal waves in the Indonesian seas from geostationary orbit. Remote Sens. Environ. 208, 202-209. https://doi.org/10. 1016/j.rse.2018.02.018
- 26. Masunaga, E., Homma, H., Yamazaki, H., Fringer, O.B., Nagai, T., Kitade, Y., Okayasu, A., 2015. Mixing and sediment resuspension associated with internal bores in a shallow bay. Cont. Shelf Res. 110, 85-99. https://doi.org/10.1016/j.csr.2015.09.022
- 27. Maxworthy, T., 1979. Note on the Internal Solitary Waves Produced By Tidal Flow Over a Three-Dimensional Ridge. J. Geophys. Res. 84, 338-346. https://doi.org/10.1029/jc084ic01p00338
- 28. Mitnik, L., Alpers, W., Hock, L., 2000. Thermal plumes and internal solitary waves generated in the Lombok strait studied by ERS SAR. Eur. Sp. Agency, (Special Publ. ESA SP) 1834-1842.
- 29. Moum, J.N., Farmer, D.M., Smyth, W.D., Armi, L., Vagle, S., 2003. Structure and Generation of Turbulence at Interfaces Strained by Internal Solitary Waves Propagating Shoreward over the Continental Shelf. J. Phys. Oceanogr. 33, 2093-2112. https://doi.org/10.1175/1520-0485(2003)0332.0.CO;2
- 30. Moum, J.N., Klymak, J.M., Nash, J.D., Perlin, A., Smyth, W.D., 2007. Energy transport by nonlinear internal waves. J. Phys. Oceanogr. 37, 1968-1988. https://doi.org/10.1175/JPO3094.1
- 31. Nagai, T., Hibiya, T., 2015. Internal tides and associated vertical mixing in the Indonesian Archipelago. J. Geophys. Res.-Oceans 120, 3373-3390. https://doi.org/10.1002/2014JC010592
- 32. Nagai, T., Hibiya, T., Syamsudin, F., 2021. Direct Estimates of Turbulent Mixing in the Indonesian Archipelago and Its Role in the Transformation of the Indonesian Throughflow Waters. Geophys. Res. Lett. 48, e2020GL091731. https://doi.org/10.1029/2020GL091731
- 33. Nugroho, D., Koch-Larrouy, A., Gaspar, P., Lyard, F., Reffray, G., Tranchant, B., 2016. Modelling explicit tides in the Indonesian seas: An important process for surface sea water properties. Mar. Pollut. Bull. https://doi.org/10.1016/j.marpolbul.2017.06.033
- 34. Osborne, A.R., Burch, T.L., Scarlet, R.I., 1978. The Influence Of Internal Waves On Deepwater Drilling Operations. J. Pet. Technol. 30, 1497-1504. https://doi.org/10.4043/2797-MS
- 35. Ostrovsky, L.A., Stepanyants, Y.A., 1989. Do internal solitions exist in the ocean? Rev. Geophys. 27, 293-310. https://doi.org/10.1029/RG027i003p00293
- 36. Pineda, J., López, M., 2002. Temperature, stratification and barnacle larval settlement in two Californian sites. Cont. Shelf Res. 22, 1183-1198. https://doi.org/10.1016/S0278-4343(01)00098-X
- 37. Prasetya, I.A., Atmadipoera, A.S., Budhiman, S., Nugroho, U.C., 2021. Internal solitary waves in the Northwest Sumatra Sea Indonesia: From observation and modeling. IOP Conf. Ser. Earth Environ. Sci. 944. https://doi.org/10.1088/1755-1315/944/1/012056
- 38. Purwandana, A., Cuypers, Y., Bouruet-Aubertot, P., 2021a. Observation of internal tides, nonlinear internal waves and mixing in the Lombok Strait. Indonesia. Cont. Shelf Res. 216. https://doi.org/10.1016/j.csr.2021.104358
- 39. Purwandana, A., Cuypers, Y., Bouruet-Aubertot, P., Nagai, T., Hibiya, T., Atmadipoera, A.S., 2020. Spatial structure of turbulent mixing inferred from historical CTD datasets in the Indonesian seas. Prog. Oceanogr. 184, 102312. https://doi.org/10.1016/j.pocean.2020.102312
- 40. Purwandana, A., Cuypers, Y., Kusmanto, E., Bouruet-Aubertot, P., Rachman, A., Muhadjirin, Dwi, Santoso, P., 2021b. Observed internal solitary waves in the western Halmahera Sea, Indonesia. In: The 2nd International Symposium on Physics and Applications (ISPA). Department of Physics, Faculty of Sciences and Data Analytics. Institut Teknologi Sepuluh Nopember, Indonesia, Surabaya, 38.
- 41. Pushidrosal, 2021. World Hydrography Day 2021 - International Webinar (Pushidrosal Channel - YouTube).
- 42. Setiawan, R.Y., Iskandar, I., Wirasatriya, A., R, D.S., Siswanto, E., Pranowo, W.S., Setiawati, M.D., Mardiansyah, W., 2022. Seasonal and interannual coastal wind variability off the central Maluku Islands revealed by satellite oceanography. Glob. NEST J. 24, 37-43. https://doi.org/10.30955/gnj.004177
- 43. Stepanyants, Y., 2021. How internal waves could lead to wreck American and Indonesian submarines? Cornell Univ., 28 pp. https://doi.org/10.48550/arXiv.2107.00828
- 44. Sun, L., Zhang, J., Meng, J., 2021. Study on the propagation velocity of internal solitary waves in the Andaman Sea using Terra/Aqua-MODIS remote sensing images. J. Oceanol. Limnol. 39, 2195-2208. https://doi.org/10.1007/s00343-020-0280-6
- 45. Susanto, R.D., Mitnik, L., Zheng, Q., 2005. Ocean Internal Waves Observed in the Lombok Strait. Oceanography 18, 80-87. https://doi.org/10.5670/oceanog.2005.08
- 46. Syamsudin, F., Taniguchi, N., Zhang, C., Hanifa, A.D., Li, G., Chen, M., Mutsuda, H., Zhu, Z.N., Zhu, X.H., Nagai, T., Kaneko, A., 2019. Observing Internal Solitary Waves in the Lombok Strait by Coastal Acoustic Tomography. Geophys. Res. Lett. 46, 10475-10483. https://doi.org/10.1029/2019GL084595
- 47. Vasavi, S., Divya, C., Sarma, A.S., 2021. Detection of solitary ocean internal waves from SAR images by using U-Net and KDV solver technique. Glob. Transitions Proc. 2, 145-151. https://doi.org/10.1016/j.gltp.2021.08.063
- 48. Venayagamoorthy, S.K., Fringer, O.B., 2007. On the formation and propagation of nonlinear internal boluses across a shelf break. J. Fluid Mech. 577, 137-159. https://doi.org/10.1017/S0022112007004624
- 49. Venayagamoorthy, S.K., Fringer, O.B., 2006. Numerical simulations of the interaction of internal waves with a shelf break. Phys. Fluids 18. https://doi.org/10.1063/1.2221863
- 50. Vlasenko, V., Alpers, W., 2005. Generation of secondary internal waves by the interaction of an internal solitary wave with an underwater bank. J. Geophys. Res.-Oceans 110, 1-16. https://doi.org/10.1029/2004JC002467
- 51. Walter, R.K., 2014. Nonlinear internal waves, internal bores, and turbulent mixing in the nearshore coastal environment. Diss. Univ. Stanford, 264 pp.
- 52. Wang, T., Huang, X., Zhao, W., Zheng, S., Yang, Y., Tian, J., 2022. Internal Solitary Wave Activities near the Indonesian Submarine Wreck Site Inferred from Satellite Images. J. Mar. Sci. Eng. 10. https://doi.org/10.3390/jmse10020197
- 53. Yuan, D., Yin, X., Li, X., Corvianawatie, C., Wang, Z., Li, Y., Yang, Y., Hu, X., Wang, J., Tan, S., Surinati, D., Purwandana, A., Wardana, A.K., Furqon, M., Ismail, A., Budiman, A.S., Bayhaqi, A., Avianto, P., Santoso, P.D., Kusmanto, E., Ari, Z., Pratt, L.J., 2022. A Maluku Sea intermediate western boundary current connecting Pacific Ocean circulation to the Indonesian Through flow. Nat. Commun. 13, 1-8. https://doi.org/10.1038/s41467-022-29617-6
- 54. Zhang, X., Wang, H., Wang, S., Liu, Y., Yu, W., Wang, J., Xu, Q., Li, X., 2022. Oceanic internal wave amplitude retrieval from satellite images based on a data-driven transfer learning model. Remote Sens. Environ. 272, 112940. https://doi.org/10.1016/j.rse.2022.112940
- 55. Zheng, Q., Klemas, V., Yan, X.-H., Pan, J., 2001a. Nonlinear evolution of ocean internal solitons propagating along an inhomogeneous thermocline. J. Geophys. Res. 106, 14,083-14,094. https://doi.org/10.1029/2000JC000386
- 56. Zheng, Q., Yuan, Y., Klemas, V., Yan, X.H., 2001b. Theoretical expression for an ocean internal soliton synthetic aperture radar image and determination of the soliton characteristic half width. J. Geophys. Res. Ocean. 106, 31415-31423. https://doi.org/10.1029/2000jc000726
- 57. Zou, P.X., Bricker, J.D., Uijttewaal, W.S.J., 2021. The impacts of internal solitary waves on a submerged floating tunnel. Ocean Eng. 238, 109762. https://doi.org/10.1016/j.oceaneng.2021.109762
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023). (PL)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-1eff71a9-85f7-4475-a49e-0dc1ff6c1ee3