Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2024 | Vol. 72, no. 2 | 1343--1353
Tytuł artykułu

Methodology to monitor the seismic response to injected carbon dioxide. Model and synthetic seismograms of CO2 injection

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Petrophysics and fluid-flow simulations are used to build a realistic pre- and post- CO2 injection geological model for the Utsira formation at the Sleipner field, and the Fourier pseudospectral method is employed to compute synthetic seismograms. The methodology can be used to perform a seismic sensitivity analysis for the detection of carbon dioxide. We built the model solely based on the porosity and clay content of the formations with the aid of fluid-flow and seismic simulations. The pressure map before the injection is assumed to be hydrostatic for which a reference porosity map is defined. The injection induces pore pressure variations and partial saturation, which affect the poroelastic properties and hence the associated seismic response. A proper porosity-permeability-clay content relation is one of the key factors since permeability determines the preferential flow directions and the distribution of the CO2 plume. The petrophysical model is based on a shaly sandstone (or sandy shale) to represent the caprock, Utsira Sand and embedded mudstone layers. The composite permeability (anisotropic) is analogous to the inverse electrical resistance model. Gas viscosity depends on pressure and temperature. The P- and S-wave velocities are obtained from Gassmann equation (pre-injection) and White’s mesoscopic model (post-injection), which also yields the P-wave quality factor in the case of partial (patchy) saturation. To model a realistic situation, we implement a fractal variation of the porosity and clay content, based on the von Kármán correlation function. We then compare the real and synthetic seismograms (pre-injection and post-injection) and show the effect of attenuation on the seismic data. Simulations and real data show a remarkable match.
Wydawca

Czasopismo
Rocznik
Strony
1343--1353
Opis fizyczny
Bibliogr. 32 poz.
Twórcy
  • KACST, PO Box 6086, Riyadh 11442, Saudi Arabia
autor
  • National Institute of Oceanography and Applied Geophysics - OGS, Trieste, Italy
  • School of Earth Sciences and Engineering, Hohai University, Nanjing, China
  • National Institute of Oceanography and Applied Geophysics - OGS, Trieste, Italy
  • KACST, PO Box 6086, Riyadh 11442, Saudi Arabia
autor
  • School of Earth Sciences and Engineering, Hohai University, Nanjing, China
  • Facultad de Ingeniería, Instituto del Gas y del Petróleo, Universidad de Buenos Aires, Buenos Aires, Argentina
  • Department of Mathematics, Purdue University, West Lafayette, USA
autor
  • School of Earth Sciences and Engineering, Hohai University, Nanjing, China, jingba@188.com
Bibliografia
  • 1. Alajmi M, Bona A, Pevzner R (2016) Empirical 3D depth/time dependent coherent noise generation for use in statistical models of seismic data. J Appl Geophys 125:7-13
  • 2. Arts RJ, Chadwick A, Eiken O, Thibeau S, Nooner S (2008) Ten years’ experience of monitoring CO2 injection in the Utsira Sand at Sleipner, offshore Norway. First Break 26:65-72
  • 3. Arts R, Eiken O, Chadwick A, Zweigel P, van der Meer L, Zinszner B (2004) Monitoring of CO2 injected at Sleipner using time-lapse seismic data. Energy 29:1383-1392
  • 4. Audigane P, Gaus I, Czernichowski-Lauriol I, Pruess K, Xu T (2007) Two-dimensional reactive transport modeling of CO2 injection in a saline aquifer at the Sleipner site. North Sea Am J Sci 307:974-1008
  • 5. Audigane P, Chiaberge C, Mathurin F, Lions J, Picot-Colbeaux G (2011) A workflow for handling heterogeneous 3D models with the TOUGH2 family of codes: applications to numerical modeling of CO2 geological storage. Comput Geosci 37:610-620
  • 6. Bear J, Bachmat Y (1990) Introduction to modeling of transport phenomena in porous media. Kluwer, Dordrecht
  • 7. Bear J, Braester C, Menier PC (1987) Effective and relative permeabilities of anisotropic porous media. Transp Porous Med 2:301-316
  • 8. Carcione JM (2022) Wave fields in real media. Theory and numerical simulation of wave propagation in anisotropic, anelastic, porous and electromagnetic media, 4th edition, Elsevier
  • 9. Carcione JM, Gei D (2009) Theory and numerical simulation of fluid-pressure diffusion in anisotropic porous media. Geophysics 74:N31-N39
  • 10. Carcione JM, Gei D, Picotti S, Michelini A (2012) Cross-hole electromagnetic and seismic modeling for CO2 detection and monitoring in a saline aquifer. J Petrol Sci Eng. https://doi.org/10.1016/j. petrol.2012.03.018
  • 11. Carcione JM, Gurevich B, Cavallini F (2000) A generalized Biot-Gassmann model for the acoustic properties of shaley sandstones. Geophys Prosp 48:539-557
  • 12. Carcione JM, Helbig K, Helle HB (2003) Effects of pressure and saturating fluid on wave velocity and attenuation of anisotropic rocks. Int J Rock Mech Min Sci 40:389-403
  • 13. Carcione JM, Picotti S, Gei D, Rossi G (2006) Physics and seismic modeling for monitoring CO2 storage. Pure Appl Geophys 163:175-207
  • 14. Carcione JM, Picotti S, Santos JE, Qadrouh AN, Almalki HS (2014) Numerical simulation of two-phase fluid flow. J Petrol Explor Prod Technol. https://doi.org/10.1007/s13202-014-0109-y
  • 15. Carcione JM, Qadrouh AN, Alajmi M, Alqahtani NB, Ba J (2023) Rock acoustics of CO2 storage in basalt. Geophys J Int. https://doi.org/ 10.1093/gji/ggad252
  • 16. Chadwick RA, Arts R, Eiken O (2005) 4D seismic quantification of a growing CO2 plume at Sleipner North Sea. In: Dore, A.G.; Vining, B.A., (eds.) Petroleum geology: North-West Europe and global perspectives—proceedings of the 6th petroleum geology conference. Geological Society, London, pp 1385-1399
  • 17. Chadwick A, Noy D, Lindeberg E, Arts R, Eiken O, Williams G (2006) Calibrating reservoir performance with time-lapse seismic monitoring and flow simulations of the Sleipner CO2 plume. GHGT-8: 8th International conference on greenhouse gas control technologies, Trondheim, Norway, 19-22 June 2006. Elsevier, Oxford, pp 1-6
  • 18. Dupuy B, Romdhane A, Eliasson P, Querendez E, Yan H, Torres VA, Ghaderi A (2017) Quantitative seismic characterization of CO2 at the Sleipner storage site. North Sea Interpret 5(4):23-42. https:// doi.org/10.1190/INT-2017-0013.1
  • 19. Dvorkin J, Nur A, Yin H (1994) Effective properties of cemented granular material. Mech Mater 18:351-366
  • 20. Ganguli SS, Kumar P, Dimri VP (2019) Seismic anisotropy of a fractured rock during CO2 injection: a feasibility study. Acta Geophys 67:141-148
  • 21. Guo J, Han X (2016) Rock physics modelling of acoustic velocities for heavy oil sand. J Petrol Sci Eng 145:436-443
  • 22. Liao J, Wen P, Guo J, Zhou L (2023) Seismic dispersion, attenuation and frequency-dependent anisotropy in a fluid-saturated porous periodically layered medium. Geophys J Internat 234:331-345
  • 23. Luo X, Vasseur G (1996) Geopressuring mechanism of organic matter cracking: numerical modeling. AAPG Bull 80:856-874
  • 24. Mavko G, Mukerji T, Dvorkin J (2009) The Rock physics handbook. Cambridge University Press
  • 25. McKenna JJ, Gurevich B, Urosevic M, Evans BJ (2003) Rock physics-application to geological storage of CO2 . APPEA Journal 43:567-576
  • 26. Nilsen HM, Herrera PA, Ashraf SM, Ligaarden I, Iding M, Hermanrud C, Lie K-A, Nordbottem JM, Dahle HK, Kellegavlen E (2011) Field-case simulation of CO2-plume migration using verticalequilibrium models. Energy Proced 4:3801-3808
  • 27. Picotti S, Carcione JM, Gei D, Rossi G, Santos JE (2012) Seismic modeling to monitor CO2 geological storage: the Atzbach-Schwan-enstadt gas field. J Geophys Res 117:B06103. https://doi.org/10. 1029/2011JB008540
  • 28. Rabben TE, Ursin B (2011) AVA inversion of the top Utsira Sand reflection at the Sleipner field. Geophysics 76:C53-C63
  • 29. Savioli G, Santos JE (2011) Modeling of CO2 storage in aquifers. J Phys Conf Ser 296:012021. https://doi.org/10.1088/1742-6596/ 296/1/012021
  • 30. Savioli GB, Santos JE, Carcione JM, Gei D (2016) A model for CO2 storage and seismic monitoring combining multiphase fluid flow and wave propagation simulators. Sleipner-field Case Comput Geosci. https://doi.org/10.1007/s10596-016-9607-y
  • 31. White MD, Oostrom M, Imhard RJ (1995) Modeling fluid flow and transport in variably saturated porous media with the STOMP simulator. 1. Nonvolatile three-phase model description. Adv Water Res 18(6):353-364
  • 32. Zimmerman RW, Somerton WH, King MS (1986) Compressibility of porous rocks. J Geophys Res 91:12765-12777
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-1ed014c5-7e23-46bc-acc9-ba24e99d5aa9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.