Czasopismo
2017
|
Vol. 97, nr 1
|
44--51
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
A numerical simulation of a basin solar still under various climatic parameters was performed. The proposed system was modeled using the mass and energy balance equations of different parts of the solar still. The resulting system of nonlinear algebraic equations was solved numerically and the effect of various parameters, such as wind speed, air temperature and solar radiation on the amount of distilled water produced was described. The results showed that the ambient temperature and wind speed had no significant effect on the amount of distilled water produced, while the amount of solar radiation exerted a direct effect on the amount of distilled water produced and performance of the system.
Czasopismo
Rocznik
Tom
Strony
44--51
Opis fizyczny
Bibliogr. 25 poz., rys., tab., wykr.
Twórcy
autor
- Department of Mechanical Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran, masoud.afrand@pmc.iaun.ac.ir
autor
- Department of Mechanical Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
Bibliografia
- [1] P. Krawczyk, K. Badyda, Modelling of thermal and flow processes in a solar waste-water sludge dryer with supplementary heat supply from external sources, Journal of Power Technologies 91 (1) (2011) 37.
- [2] R. D. Tapakis, A. G. Charalambides, Performance evaluation of a photovoltaic park in cyprus using irradiance sensors, Journal of Power Technologies 94 (4) (2014) 296.
- [3] A. Wyrwa, A. Szurlej, L. Gawlik, W. Suwala, Energy scenarios for poland-a comparison of primes and times-pl modeling results, Journal of Power Technologies 95 (5) (2015) 100.
- [4] F. Zebiri, A. Kessal, L. Rahmani, A. Chebabhi, Analysis and design of photovoltaic pumping system based on nonlinear speed controller, Journal of Power Technologies 96 (1) (2016) 40.
- [5] M. Afrand, D. Toghraie, B. Ruhani, Effects of temperature and nanoparticles concentration on rheological behavior of fe 3 o 4–ag/eg hybrid nanofluid: an experimental study, Experimental Thermal and Fluid Science 77 (2016) 38–44.
- [6] M. Baratpour, A. Karimipour, M. Afrand, S. Wongwises, Effects of temperature and concentration on the viscosity of nanofluids made of single-wall carbon nanotubes in ethylene glycol, International Communications in Heat and Mass Transfer 74 (2016) 108–113.
- [7] H. Eshgarf, M. Afrand, An experimental study on rheological behavior of non-newtonian hybrid nano-coolant for application in cooling and heating systems, Experimental Thermal and Fluid Science 76 (2016) 221–227.
- [8] M. Soltanimehr, M. Afrand, Thermal conductivity enhancement of cooh-functionalized mwcnts/ethylene glycol–water nanofluid for application in heating and cooling systems, Applied Thermal Engineering 105 (2016) 716–723.
- [9] D. Toghraie, V. A. Chaharsoghi, M. Afrand, Measurement of thermal conductivity of zno–tio2/eg hybrid nanofluid, Journal of Thermal Analysis and Calorimetry 125 (1) (2016) 527–535.
- [10] A. Kaushal, et al., Solar stills: A review, Renewable and Sustainable Energy Reviews 14 (1) (2010) 446–453.
- [11] M. S. S. Abujazar, S. Fatihah, A. Rakmi, M. Shahrom, The effects of design parameters on productivity performance of a solar still for seawater desalination: A review, Desalination 385 (2016) 178–193.
- [12] T. Rajaseenivasan, K. Kalidasa Murugavel, T. Elango, Performance and exergy analysis of a double-basin solar still with different materials in basin, Desalination and Water Treatment 55 (7) (2015) 1786–1794.
- [13] H. N. Panchal, P. K. Shah, Enhancement of upper basin distillate output by attachment of vacuum tubes with double-basin solar still, Desalination and Water Treatment 55 (3) (2015) 587–595.
- [14] A. Minasian, A. Al-Karaghouli, S. Habeeb, Utilization of a cylindrical parabolic reflector for desalination of saline water, Energy conversion and management 38 (7) (1997) 701–704.
- [15] S. Kumar, G. Tiwari, H. Singh, Annual performance of an active solar distillation system, Desalination 127 (1) (2000) 79–88.
- [16] P. ˙I. Ayav, G. Atagündüz, Theoretical and experimental investigations on solar distillation of iztech campus area seawater, Desalination 208 (1-3) (2007) 169–180.
- [17] S. Radwan, A. Hassanain, M. Abu-Zeid, et al., Single slope solar still for sea water distillation., World Applied Sciences Journal 7 (4) (2009) 485–497.
- [18] A. S. Rajan, K. Raja, P. Marimuthu, Multi basin desalination using biomass heat source and analytical validation using rsm, Energy Conversion and Management 87 (2014) 359–366.
- [19] M. Asbik, O. Ansari, A. Bah, N. Zari, A. Mimet, H. El-Ghetany, Exergy analysis of solar desalination still combined with heat storage system using phase change material (pcm), Desalination 381 (2016) 26–37.
- [20] K. Srithar, T. Rajaseenivasan, N. Karthik, M. Periyannan, M. Gowtham, Stand alone triple basin solar desalination system with cover cooling and parabolic dish concentrator, Renewable Energy 90 (2016) 157–165.
- [21] W. C. Swinbank, Long-wave radiation from clear skies, Quarterly Journal of the Royal Meteorological Society 89 (381) (1963) 339–348.
- [22] R. Dunkle, Solar water distillation: the roof type still and the multiple effect diffusor, Int. Dev. in Heat Transfer;().
- [23] J. Fernández, N. Chargoy, Multi-stage, indirectly heated solar still, Solar energy 44 (4) (1990) 215–223.
- [24] Grundgesetze der Waermeubertrgung, Springer-Verlag, 1963, Grigull U.
- [25] M. Afrand, A. Behzadmehr, A. Karimipour, A numerical simulation of solar distillation for installation in chabahar-iran, World Academy of Science, Engineering and Technology 47 (2010) 469–474.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-1ebb79b2-836c-4683-9d09-fd971f9b97be