Warianty tytułu
Języki publikacji
Abstrakty
Single crystals of pure and L-threonine added tartaric acid (LT/TA), organic nonlinear optical (NLO) materials were grown from their respective aqueous solution by slow evaporation method. The crystalline nature of the grown crystals was confirmed by powder X-ray diffraction analysis (XRD). UV-Vis-NIR absorption and transmission spectra revealed that the lower cut-off wavelength was around 281 nm and the crystals exhibited high transmission over visible and near IR region. The presence of the functional groups such as O–H, C–H, C–O, C=O in the grown crystals was confirmed by FT-IR analysis. CHN analysis was carried out to confirm the presence of L-threonine in the grown crystals. Microhardness study on the crystals revealed that the hardness number Hv increased with the applied load. The growth pattern of the crystals were analyzed through etching analysis from which the etch patterns in the shape of 'step-triangle' were observed. The second harmonic generation (SHG) properties of pure and L-threonine doped tartaric acid crystals were confirmed by Kurtz-Perry powder technique.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
630--637
Opis fizyczny
Bibliogr. 23 poz., rys., tab.
Twórcy
autor
- G.R.D Center for Materials Research, PSG College of Technology, Coimbatore-641004, India
- Department of Physics, Dr. N.G.P. Institute of Technology, Coimbatore-641048, India
autor
- G.R.D Center for Materials Research, PSG College of Technology, Coimbatore-641004, India Department of Physics, PSG College of Technology, Coimbatore-641004, India, rarunpsgtech@yahoo.com
autor
- Department of Materials Science, Central University of Tamil Nadu, Thiruvarur-610 005, India
Bibliografia
- [1] Martin Britto Dhass A., Suresh M., Bhagavannarayana G., Natarajan S., J. Cryst. Growth, 309 (2007), 48.
- [2] Mary Linet J., Jerome Das S., Mater. Chem. Phys., 126 (2011), 886.
- [3] Moolya B.N., Dharmaprakash S.M., J. Cryst. Growth, 290 (2006), 498.
- [4] Gon H.B., J. Cryst. Growth, 102(1990), 501.
- [5] Ivanov N.R., Ferroelectrics Lett., 2 (1984), 45.
- [6] Meng F.Q., Lu M.K., Chen J., Zhang S.J., Zeng H., Solid State Commun., 101 (1997), 925.
- [7] Gu Y., Yang M., Cryst. Res. Technol., 43 (2008), 1331.
- [8] Want B., Ahmad F., Kotru P.N., J. Cryst. Growth, 299 (2007), 336.
- [9] Parekh B.B., Joshi V.S., Pawar V., Thaker V.S., Joshi M.J., Cryst. Res. Technol., 44 (2009), 31.
- [10] Arora S., Kkothari A., Amin B., Chudasama B., Cryst. Res. Technol., 42 (2007), 589.
- [11] Bhat M.N., Dharmaprakash S.M., J. Cryst. Growth, 243 (2002), 526.
- [12] Kajzar F., Messier J., Cheml A., Zyss D.S., J. Nonlinear Optical Properties of Organic Molecules and Crystals, Academic Press, New York. 1987, 51.
- [13] Razzetti C., Ardoino M., Zanotti L., Zha M., Paorici C., Cryst. Res. Technol., 37 (2002), 456.
- [14] Jaikumar D., Kalainathan S., Cryst. Res. Technol., 43 (2008), 565.
- [15] Shoemaker D.P., Donohue J., Schomaker V., Corey R.B., J. Am. Chem. Soc., 72 (1950), 2328.
- [16] Tigau N., Rusu G.I., Ciupina V., Prodan G., Vasile E., J. Optoelectron. Adv. M., 7 (2005), 727.
- [17] Chawla A.K., Kaur D., Chandra R., Opt. Mater., 29 (2007), 995.
- [18] Senthil Murugan G., Ramasamy P., AIP Conf. Proc., 1447 (2012), 511.
- [19] Somasundari C.V., Arch. Phys. Res., 3 (2012), 283.
- [20] Mott B.W., Micro-Indentation Hardness Testing Bulterworths, London, 1956, 206.
- [21] Lal B., Bamzai K.K., Kotru P.N., Wanklyn B.M., Mat. Chem. Phys., 85 (2004), 353.
- [22] Sangwal K., Heimann R.B., Etching of Crystals: Theory, Experiments and Applications, North Holland, Amsterdam, 1987.
- [23] Sangwal K., Owczarek I., J. Cryst. Growth, 129 (1993), 640.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-1e6a7267-72d4-4c01-99a7-7b795bdd591c