Warianty tytułu
Języki publikacji
Abstrakty
This work is concerned with a multi-dimensional viscoelastic pseudo-parabolic equation with critical Sobolev exponent. First, with some suitable conditions, we prove that the weak solution exists globally. Next, we show that the stability of the system holds for a much larger class of kernels than the ones considered in previous literature. More precisely, we consider the kernel g:[0,∞)⟶(0,∞) satisfying g′(t)⩽−ξ(t)G(g(t)) , where ξ and G are functions satisfying some specific properties.
Czasopismo
Rocznik
Tom
Strony
737--751
Opis fizyczny
Bibliogr. 21 poz.
Twórcy
autor
- University of Economics Ho Chi Minh City, Ho Chi Minh City, Vietnam , vungotran@ueh.edu.vn
autor
- University of Economics Ho Chi Minh City, Ho Chi Minh City, Vietnam , dungdaobao@ueh.edu.vn
autor
- Faculty of Fundamental Sciences, University of Architecture Ho Chi Minh City, Ho Chi Minh City, Vietnam, dung.huynhthihoang@uah.edu.vn
Bibliografia
- [1] M. O. Korpusov and A. G. Sveshnikov, Blow-up of solutions of nonlinear Sobolev type equations with cubic sources, Differ. Equ. 42 (2006), no. 3, 431–443, DOI: https://doi.org/10.1134/S001226610603013X.
- [2] E. C. Aifantis, On the problem of diffusion in solids, Acta Mech. 37 (1980), no. 3, 265–296, DOI: https://doi.org/10.1007/BF01202949.
- [3] W. Lian, J. Wang, and R. Xu, Global existence and blow up of solutions for pseudo-parabolic equation with singular potential, J. Differ. Equ. 269 (2020), no. 6, 4914–4959, DOI: https://doi.org/10.1016/j.jde.2020.03.047.
- [4] X. Wang and R. Xu, Global existence and finite time blowup for a nonlocal semilinear pseudo-parabolic equation, Adv. Nonlinear Anal. 10 (2021), no. 1, 261–288, DOI: https://doi.org/10.1515/anona-2020-0141.
- [5] E. Karapinar, H. D. Binh, N. H. Luc, and N. H. Can, On continuity of the fractional derivative of the time-fractional semilinear pseudo-parabolic systems, Adv. Differ. Equ. 2021 (2021), no. 70, DOI: https://doi.org/10.1186/s13662-021-03232-z.
- [6] R. S. Adigüzel, U. Aksoy, E. Karapinar, and I. M. Erhan, On the solution of a boundary value problem associated with a fractional differential equation, Math. Methods Appl. Sci. 2021 (2021), DOI: https://doi.org/10.1002/mma.6652.
- [7] R. S. Adigüzel, U. Aksoy, E. Karapinar, and I. M. Erhan, Uniqueness of solution for higher-order nonlinear fractional differential equations with multi-point and integral boundary conditions, RACSAM 115 (2021), no. 3, DOI: https://doi.org/10.1007/s13398-021-01095-3.
- [8] R. S. Adigüzel, U. Aksoy, E. Karapinar, and I. M. Erhan, On the solutions of fractional differential equations via Geraghty type hybrid contractions, Appl. Comput. Math. 20 (2021), no. 2, 313–333.
- [9] H. Afshari and E. Karapinar, A solution of the fractional differential equations in the setting of b-metric space, Carpathian Math. Publ. 13 (2021), no. 3, 764–774, DOI: http://doi.org/10.15330/cmp.13.3.764-774
- [10] H. Afshari, and E. Karapinar, A discussion on the existence of positive solutions of the boundary value problems via ψ-Hilfer fractional derivative on b-metric spaces, Adv. Differ. Equ. 2020 (2020), no. 16, DOI: https://doi.org/10.1186/s13662-020-03076-z.
- [11] E. Karapinar, A. Fulga, N. Shahzad, and A. F. L. P. de Hierro, Solving integral equations by means of fixed point theory, J. Funct. Spaces 2022, (2022), DOI: https://doi.org/10.1155/2022/7667499.
- [12] H. Afshari and E. KKarapinar, A solution of the fractional differential equations in the setting of b-metric space, Carpathian Math. Publ. 13 (2021), 764–774, DOI: https://doi.org/10.15330/cmp.13.3.764-774.
- [13] J. E. Lazreg, S. Abbas, M. Benchohra, and E. Karapinar, Impulsive Caputo-Fabrizio fractional differential equations in b-metric spaces, Open Math. 19 (2021), 363–372, DOI: https://doi.org/10.1515/math-2021-0040.
- [14] H. Afshari, H. Shojaat, and M. S. Moradi, Existence of the positive solutions for a tripled system of fractional differential equations via integral boundary conditions, Results Nonlinear Anal. 4 (2021), no. 3, 186–199, DOI: https://doi.org/10.53006/rna.938851.
- [15] Q.-M. Tran and T.-T. Vu,Some sharp results about the global existence and blowup of solutions to a class of coupled pseudo-parabolic equations, J. Math. Anal. Appl. 506 (2022), no. 2, 125719, DOI: https://doi.org/10.1016/j.jmaa.2021.125719.
- [16] R. Xu and J. Su, Global existence and finite time blow-up for a class of semilinear pseudo-parabolic equations, J. Funct. Anal. 264 (2013), no. 12, 2732–2763, DOI: https://doi.org/10.1016/j.jfa.2013.03.010.
- [17] L. Yacheng and Z. Junsheng, On potential wells and applications to semilinear hyperbolic equations and parabolic equations, Nonlinear Anal. Theory Methods Appl 64 (2006), no. 12, 2665–2687, DOI: https://doi.org/10.1016/j.na.2005.09.011.
- [18] R. Xu, X. Wang, and Y. Yang, Blowup and blowup time for a class of semilinear pseudo-parabolic equations with high initial energy, Appl. Math. Lett. 83 (2018), 176–181, DOI: https://doi.org/10.1016/j.aml.2018.03.033.
- [19] F. Sun, L. Liu, and Y. Wu, Global existence and finite time blow-up of solutions for the semilinear pseudo-parabolic equation with a memory term, Appl. Anal. 98 (2019), no. 4, 735–755, DOI: http://doi.org/10.1080/00036811.2017.1400536.
- [20] H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer, New York, NY, 2010.
- [21] E. Vitillaro, Global nonexistence theorems for a class of evolution equations with dissipation, Arch. Ration. Mech. Anal. 149 (1999), no. 24, 155–182, DOI: http://doi.org/10.1007/s002050050171.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-1e2664b5-4031-464c-b8b6-ac3af9dfc464