Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2023 | Vol. 24, nr 12 | 377--387
Tytuł artykułu

Water De-Chlorination by Non-Modified and Modified Biochar Derived from Date Palm

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The present study investigates the reduction of free residual chlorine (FC) from aqueous solution using non-modified biochar (NM-B) and chemically modified biochar (M-B) derived from date palms. The role of biochar dose, biochar particle size, reaction time, solution pH, and initial concentration of FC on adsorption efficiency were assessed. The optimum contact time for higher FC uptake was reached after 20 min using NM-B and 8 min using M-B, with a biochar dose of 10 g/L. The optimum pH values and biochar size for higher FC adsorption were 4 and 0.6 mm, respectively. Higher removal was reached at 88% using NM-B and 96% using M-B. The pseudo-second-order model matched well with the kinetic outcomes. Langmuir isotherm was fitted well with the equilibrium results of FC uptake on NM-B and M-B, with regression coefficient (R2) values of 0.98 and 0.998, in that order. The separation parameter was within the limits of favorable adsorption of FC by both biochars. The higher uptake capacity (0.215 mg/g) was linked with the M-B, indicating that chemical modification of biochar was successful in increasing FC uptake from aqueous solutions. This study confirmed that utilizing biochar derived from date palms for FC removal is a very beneficial and cost-effective solution, especially in the countries that are considered the largest date producer in the world.
Słowa kluczowe
Wydawca

Rocznik
Strony
377--387
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
  • Department of Material Engineering, College of Engineering, Univesity of Basrah, P.O. Box 49, Basrah, Iraq
  • Department of Civil Engineering, College of Engineering, Univesity of Basrah, P.O. Box 49, Basrah, Iraq
Bibliografia
  • 1. Ali, I., & Gupta, V. (2006). Advances in water treatment by adsorption technology. Nature protocols, 1(6), 2661-2667.
  • 2. Ambaye, T., Vaccari, M., van Hullebusch, E.D., Amrane, A., & Rtimi, S. (2021). Mechanisms and adsorption capacities of biochar for the removal of organic and inorganic pollutants from industrial wastewater. International Journal of Environmental Science and Technology, 1-22.
  • 3. Asada, T., Okazaki, A., Kawata, K., & Oikawa, K. (2009). Influence of pore properties and solution pH on removal of free chlorine and combined chlorine by porous carbon. Journal of Health Science, 55(4), 649-656.
  • 4. Aylan, R.A., Al-Abbawy, D.A., & Yaseen, D.A. (2023). Development of the Horizontal Flow Wetland Using Palm Waste Biochar for Greywater Reclamation. Journal of Ecological Engineering, 24(8).
  • 5. Chemerys, V., & Baltrėnaitė-Gedienė, E. (2016). Modified biochar: a review on modifications of biochar towards its enhanced adsorptive properties.
  • 6. Davidson, M.K. (2023). Biochar from date palm (Phoenix dactylifera L.) residues—a critical review. Arabian Journal of Geosciences, 16(2).
  • 7. Dietrich, C.C., Rahaman, M.A., Robles-Aguilar, A. A., Latif, S., Intani, K., Müller, J., & Jablonowski, N.D. (2020). Nutrient loaded biochar doubled biomass production in juvenile maize plants (Zea mays L.). Agronomy, 10(4), 567.
  • 8. Fierro, V., Torné-Fernández, V., Montané, D., & Celzard, A. (2008). Adsorption of phenol onto activated carbons having different textural and surface properties. Microporous and mesoporous materials, 111(1-3), 276-284.
  • 9. Hameed, B., Tan, I., & Ahmad, A. (2008). Adsorption isotherm, kinetic modeling and mechanism of 2, 4, 6-trichlorophenol on coconut husk-based activated carbon. Chemical engineering journal, 144(2), 235-244.
  • 10. Inegbedion, F., & Ikpoza, E. (2022). Estimation of the moisture content, volatile matter, ash content, fixed carbon and calorific values of rice husk briquettes. Paper presented at the Proceedings of the International Conference on Industrial Engineering and Operations Management Nsukka, Nigeria.
  • 11. Jaguaribe, E.F., Medeiros, L.D.L., Barreto, M.D.C.S., & Araujo, L.P.D. (2005). The performance of activated carbons from sugarcane bagasse, babassu, and coconut shells in removing residual chlorine. Brazilian Journal of Chemical Engineering, 22, 41-47.
  • 12. Kamel, M.M., & Ismael, A.M. (2004). Abatement of free chlorine from water using Kaolinite clay. Ass. Univ. Bull. Environ. Res, 7(2), 117-124.
  • 13. Komnitsas, K.A., & Zaharaki, D. (2016). Morphology of modified biochar and its potential for phenol removal from aqueous solutions. Frontiers in Environmental Science, 4, 26.
  • 14. Murtaza, G., Ahmed, Z., Dai, D.-Q., Iqbal, R., Bawazeer, S., Usman, M., et al. (2022). A review of mechanism and adsorption capacities of biochar-based engineered composites for removing aquatic pollutants from contaminated water. Frontiers in Environmental Science, 10, 2155.
  • 15. Mustapha, S., Shuaib, D., Ndamitso, M., Etsuyankpa, M., Sumaila, A., Mohammed, U., & Nasirudeen, M. (2019). Adsorption isotherm, kinetic and thermodynamic studies for the removal of Pb (II), Cd (II), Zn (II) and Cu (II) ions from aqueous solutions using Albizia lebbeck pods. Applied water science, 9, 1-11.
  • 16. Ogata, F., Tominaga, H., Ueda, A., Tanaka, Y., Iwata, Y., & Kawasaki, N. (2013). Application of activated carbons from coal and coconut shell for removing free residual chlorine. Journal of oleo science, 62(4), 241-244.
  • 17. Sahu, N., Bhan, C., & Singh, J. (2021). Removal of fluoride from an aqueous solution by batch and column process using activated carbon derived from iron infused Pisum sativum peel: characterization, Isotherm, kinetics study. Environmental Engineering Research, 26(4).
  • 18. Salem, I.B., El Gamal, M., Sharma, M., Hameedi, S., & Howari, F.M. (2021). Utilization of the UAE date palm leaf biochar in carbon dioxide capture and sequestration processes. Journal of Environmental Management, 299, 113644.
  • 19. Sarbatly, R.H., & Krishnaiah, D. (2007). Free chlorine residual content within the drinking water distribution system. International Journal of Physical Sciences, 2(8), 196-201.
  • 20. Sheikhi, R., Alimohammadi, M., Askari, M., & Moghaddasian, M.S. (2014). Decay of free residual chlorine in drinking water at the point of use. Iranian journal of public health, 43(4), 535.
  • 21. Shen, Z., Zhang, Y., McMillan, O., Jin, F., & Al-Tabbaa, A. (2017). Characteristics and mechanisms of nickel adsorption on biochars produced from wheat straw pellets and rice husk. Environmental Science and Pollution Research, 24, 12809-12819.
  • 22. Sklivaniotis, L.N., Economou, P., Karapanagioti, H.K., & Manariotis, I.D. (2023). Chlorine removal from water by biochar derived from various food waste natural materials. Environmental Processes, 10(1), 4.
  • 23. Suneetha, M., Sundar, B.S., & Ravindhranath, K. (2015). Removal of fluoride from polluted waters using active carbon derived from barks of Vitex negundo plant. Journal of Analytical Science and Technology, 6(1), 1-19.
  • 24. Tahir, A.H., Al-Obaidy, A.H.M., & Mohammed, F.H. (2020). Biochar from date palm waste, production, characteristics and use in the treatment of pollutants: A Review. Paper presented at the IOP Conference Series: Materials Science and Engineering.
  • 25. Tie, J., Fang, X., Wang, X., Zhang, Y., Gu, T., Deng, S., et al. (2017). Adsorptive Removal of a Reactive Azo Dye Using Polyaniline-Intercalated Bentonite. Polish Journal of Environmental Studies, 26(3).
  • 26. Ünlü, N., & Ersoz, M. (2007). Removal of heavy metal ions by using dithiocarbamated-sporopollenin. Separation and Purification Technology, 52(3), 461-469.
  • 27. Wang, S., Gao, B., Li, Y., Mosa, A., Zimmerman, A.R., Ma, L.Q., et al. (2015). Manganese oxide-modified biochars: preparation, characterization, and sorption of arsenate and lead. Bioresource technology, 181, 13-17.
  • 28. Wang, X., Guo, Z., Hu, Z., & Zhang, J. (2020). Recent advances in biochar application for water and wastewater treatment: a review. PeerJ, 8, e9164.
  • 29. Wang, X., Sato, T., & Xing, B. (2006). Competitive sorption of pyrene on wood chars. Environmental science & technology, 40(10), 3267-3272.
  • 30. Yousif, Y.T., Yaseen, D.A., & Abu-Alhail, S. (2021). A Comparative Study for Attenuation of Residual Free Chlorine by Mesoporous Adsorbent from Scrap Tire Rubber and Commercial Activated Carbon. Journal of Green Engineering, 11, 2170-2187.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-1e07251e-b53f-4bc1-8d38-2d5d348c3805
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.