Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | Vol. 22, nr 3 | 789--807
Tytuł artykułu

Micro-vibrations and wave propagation in biperiodic cylindrical shells

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The objects of consideration are thin linearly elastic Kirchhoff-Love-type circular cylindrical shells having a periodically microheterogeneous structure in circumferential and axial directions (biperiodic shells). The aim of this contribution is to study a certain long wave propagation problem related to micro-fluctuations of displacement field caused by a periodic structure of the shells. This micro-dynamic problem will be analysed in the framework of a certain mathematical averaged model derived by means of the combined modelling procedure. The combined modelling applied here includes two techniques: the asymptotic modelling procedure and a certain extended version of the known tolerance non-asymptotic modelling technique based on a new notion of weakly slowly-varying function. Both these procedures are conjugated with themselves under special conditions. Contrary to the starting exact shell equations with highly oscillating, non-continuous and periodic coefficients, governing equations of the averaged combined model have constant coefficients depending also on a cell size. It will be shown that the micro-periodic heterogeneity of the shells leads to exponential micro-vibrations and to exponential waves as well as to dispersion effects, which cannot be analysed in the framework of the asymptotic models commonly used for investigations of vibrations and wave propagation in the periodic structures.
Wydawca

Rocznik
Strony
789--807
Opis fizyczny
Bibliogr. 24 poz., 1 rys.
Twórcy
autor
  • Department of Civil Engineering, Warsaw University of Life Sciences, Nowoursynowska Str. 166, 02-787 Warsaw, Poland, barbara tomczyk@sggw.pl
autor
  • Department of Structural Mechanics, Lodz University of Technology, Politechniki 6, 90-924 Lodz, Poland, a.litawska@gmail.com
Bibliografia
  • [1] Lewiński, T. and Telega, J.J.: Plates, laminates and shells. Asymptotic analysis and homogenization, World Scientific Publishing Company, Singapore, 2000.
  • [2] Matysiak, S.J. and Nagórko W.: Microlocal parameters in a modelling of microperiodic multilayered elastic plates, Ingenieur Archiv, 59, 434-444, 1989.
  • [3] Woźniak, C. and Wierzbicki, E.: Techniques in thermomechanics of composite solids. Tolerance averaging versus homogenization, Częstochowa University Press, Częstochowa, 2000.
  • [4] Woźniak, C. and Wierzbicki, E.: On dynamics of thin plates with a periodic structures, in: Lecture Notes in Applied and Computational Mechanics, 16, Springer Verlag, Berlin-Heidelberg, 225-232, 2004.
  • [5] Woźniak, C., Michalak B. and Jędrysiak J.: Thermomechanics of heterogeneous solids and structures. Tolerance Averaging Approach, Lodz University of Technology Press, Lodz, 2008.
  • [6] Woźniak, C. et al. (eds): Mathematical modelling and analysis in continuum mechanics of microstructured media, Silesian University of Technology Press, Gliwice, 2010.
  • [7] Tomczyk, B.: Length-scale effect in dynamics and stability of thin periodic cylindrical shells, Scietific Bulletin of the Lodz University of Technology, No. 1166, series: Scientific Dissertations, Lodz: University of Technology Press, Lodz, 2013.
  • [8] Marczak, J. and Jędrysiak, J.: Tolerance modelling of vibrations of periodic threelayered plates with inert core. Composite Structures, 134, 854-861, 2015.
  • [9] Nagórko, W. and Woźniak, C.: Mathematical modelling of heat conduction in certain functionally graded composites, PAMM, 11, 253-254, 2011.
  • [10] Ostrowski, P. and Michalak, B.: A contribution to the modelling of heat conduction for cylindrical composite conductors with non-uniform distribution of constituents, International Journal of Heat and Mass Transfer, 92, 435-448, 2016.
  • [11] Pazera, E. and Jędrysiak, J.: Thermoelastic phenomena in the transversally graded laminates. Composite Structures, 134, 663-671, 2015.
  • [12] Wirowski, A.: Dynamic behaviour of thin annular plates made from functionally graded material, .in: eds. W. Pietraszkiewicz, I. Kreja, Shell Structures: Theory and Applications Volume 2, CRC Press/Balkema, Taylor & Francis Group, London, 207-210, 2010.
  • [13] Tomczyk, B. and Szczerba, P.: Tolerance and asymptotic modelling of dynamic problems for thin microstructured transversally graded shells, Composite Structures, 162, 365-373, 2017.
  • [14] Tomczyk, B. and Szczerba, P.: Combined asymptotic-tolerance modelling of dynamic problems for functionally graded shells, Composite Structures, 183, 176-184, 2018.
  • [15] Tomczyk, B. and Szczerba, P.: A new asymptotic-tolerance model of dynamic and stability problems for longitudinally graded cylindrical shells. Composite Structures, 202, 473-481, 2018.
  • [16] Tomczyk, B. and Woźniak, C.: Tolerance models in elastodynamics of certain reinforced thin-walled structures, in: eds. Z. Kołakowski, K. Kowal-Michalska, Statics, Dynamics and Stability of Structural Elements and Systems Volume 2. Lodz: University of Technology Press, Lodz, 123-153, 2012.
  • [17] Tomczyk, B. and Litawska, A.: A new tolerance model of vibrations of thin microperiodic cylindrical shells, Journal of Civil Engineering, Environment and Architecture, 64, 203-216, 2017.
  • [18] Tomczyk, B. and Litawska, A.: A new asymptotic-tolerance model of dynamics of thin uniperiodic cylindrical shells, in: eds. J. Awrejcewicz, et. al., Mathematical and Numerical Aspects of Dynamical System Analysis, ARSA-Press, Lodz, 519-532, 2017.
  • [19] Tomczyk, B. and Litawska, A.: Tolerance modelling of dynamic problems for thin biperiodic shells, in: eds. W. Pietraszkiewicz, W. Witkowski, Shell Structures: Theory and Applications, CRC Press/Balkema, Taylor & Francis Group, London, 341-344, 2018.
  • [20] Tomczyk, B. and Litawska, A.: On the combined asymptotic-tolerance modelling of dynamic problems for thin biperiodic cylindrical shells. Vibrations in Physical Systems, 29, number of article: 2018020, 2018.
  • [21] Tomczyk, B. and Litawska, A.: Length-scale effect in dynamic problems for thin biperiodically stiffened cylindrical shells, Composite Structures, 205, 1-10, 2018.
  • [22] Kaliski, S.: Vibrations, PWN-Elsevier, Warsaw-Amsterdam, 1992.
  • [23] Bensoussan, A., Lions, J.L. and Papanicolau, G.: Asymptotic analysis for periodic structures, North-Holland Publishing Co., Amsterdam, 1978.
  • [24] Jikov, V.V., Kozlov, C.M. and Olejnik, O.A.: Homogenization of differential operators and integral functionals, Springer Verlag, Berlin-Heidelberg, 1994.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-1dd3c16f-e5bb-44a4-aea8-a6c12c83e96e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.