Warianty tytułu
Języki publikacji
Abstrakty
The Paris Agreement came into force in 2016. Now, there are 196 parties to this Agreement, including Russia. The purpose of the accommodation is to hold the increase in the global average temperature below 2°C and to make efforts to limit the temperature increase to 1.5°C. Another important goal of this Agreement is to reduce greenhouse gas emissions, according to UNFCCC-2015. Each participating country at the national level plans special activities that will help to achieve these goals. In general, this should reduce the rate of global warming. The goals of the Paris Agreement can be achieved either by introduction of new technologies that exclude the formation of a large amount of carbon footprint or termination of the usage of fossil fuels for electricity production. The formation of a carbon footprint is observed at all mining enterprises, regardless of the extracted raw materials. In this case, the amount of carbon footprint depends only on the extraction technologies and the success of ecological measures.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
43--69
Opis fizyczny
Bibliogr. 123 poz., rys., tab.
Twórcy
autor
- Department of Geoecology, Saint Petersburg Mining University, Saint Petersburg, 199106, Russia alexeystrizhenok@mail.ru
autor
- Department of Geoecology, Saint Petersburg Mining University, Saint Petersburg, 199106, Russia 0000-0001-9150-4201, Bykova_MV@pers.spmi.ru
autor
- Department of Geoecology, Saint Petersburg Mining University, Saint Petersburg, 199106, Russia Korotaeva_AE@pers.spmi.ru
Bibliografia
- 1. Adamovich T.A., Kantor G.Ya., Ashikhmina T.Ya., Savinykh V.P. 2018. Analysis of the seasonal and long-term dynamics of the vegetation Index NDVI on the territory of the State Natural Reserve “Nurgush”. Theoretical and Applied Ecology, 1, 18–24.
- 2. Adao T., Hruška J., Pádua L., Bessa J., Peres E., Morais R., João Sousa J. 2017. Hyperspectral Imaging: A review on UAV-Based sensors, data processing and applications for agriculture and forestry. Remote Sensing, 9(11). DOI: 10.3390/rs9111110.
- 3. A Guide to the Restoration Opportunities Assessment Methodology (ROAM): assessing forest landscape restoration opportunities at the national or sub-national level (road-test edition). 2014. IUCN and WRI.
- 4. Akimova I.V. et al. 2019. Industrial production in Russia. Rosstat, Moscow, Russia.
- 5. Akita N., Ohe Y. 2021. Sustainable forest management evaluation using carbon credits: from production to environmental forests. Forests, 12(8). DOI: 10.3390/f12081016.
- 6. ALLOW - aluminum for a better future. 2021. ALLOW, Rusal. Available online: https://allow.rusal. ru/ (accessed on 10 August 2023).
- 7. Al-Kuwari О., Welsby В., Rodriguez B.S., Pye S., Ekins P. 2021. Carbon intensity of oil and gas production, available at Research Square. Research report. DOI: 10.21203/rs.3.rs-637584/v1.
- 8. Alyabyev V.R., Ashikhmin V.D., Plaksienko O.V., Tishin R.A. 2020. Prospects for industrial methane production in the mine n.a. V.M. Bazhanov using vertical surface wells. Journal of Mining Institute, 241, 3–9. DOI: 10.31897/PMI.2020.1.3.
- 9. Anufriev V.P., Lisienko V.G., Chesnokov Yu.N., Lapteva A.V. 2019. Assessment of emission of CO2 greenhouse gas by production of copper. Russian regions are in the focus of change, 137–144.
- 10. Asner G.P., Powell George V.N., Joseph Mascaro, Knapp D.E., Clark J.K., James Jacobson, Ty Kennedy-Bowdoin. 2010. High-resolution forest carbon stocks and emissions in the Amazon. Proceedings of the National Academy of Sciences of the United States of America, 107(38). DOI: 10.1073/pnas.1004875107.
- 11. Bernal B., Murray L.T., Pearson Timothy R.H. 2018. Global carbon dioxide removal rates from forest landscape restoration activities. Carbon balance and management, 13(1). DOI: 10.1186/s13021-018-0110-8.
- 12. Bhaskar A., Assadi M., Nikpey Somehsaraei H. 2020. Decarbonization of the iron and steel industry with direct reduction of iron ore with green hydrogen. Energies, 13(3), 758. DOI: 10.3390/en13030758.
- 13. Blinovskaya Ya.Yu., Mazlova E.A. 2019. Greenhouse gases emissions at coal production and processing: problem status and decrease technologies. The successes of modern natural science, 2, 86–93. DOI:10.33933/2074-2762-2019-54-145-154.
- 14. BP Statistical Review of World Energy. 2021.
- 15. Buergler T., Kofler I. 2017. Direct reduction technology as a flexible tool to reduce the CO2 intensity of iron and steelmaking. Berg Huettenmaenn Monatsh, 162, 14–19. DOI: 10.1007/s00501-016-0567-2.
- 16. Bulaev S.A. 2015. Is the burning of associated petroleum gases commonplace or wasteful? Bulletin of Kazan Technological University, 20, 188–190.
- 17. Bulaev S.A. 2016. Burning of associated petroleum gases. Analysis of past years and state regulation. Bulletin of Kazan Technological University, 1, 202–204.
- 18. Calders K., Jonckheere I., Nightingale, J., Vastaranta M. 2020. Remote sensing technology applications in forestry and REDD+. Forests, 11(2), 10–13. DOI: 10.3390/f11020188.
- 19. Changing of the climate. Greenhouse gas emissions. Lukoil. 2022. Available online: https://lukoil.ru/ Responsibility/Climatechange/greenhousegasemission (accessed on 10 August 2023).
- 20. Chen L., Ren C., Zhang B., Wang Z., Xi Y. 2020. Estimation of forest above-ground biomass by geographically weighted regression and machine learning with sentinel imagery. Forests, 9(10), 1–20. DOI: 10.3390/f9100582.
- 21. Chesnokov J.N., Lisienko V.G., Lapteva A.V. 2014. Development of graphs of carbon dioxide emissions by metallurgical enterprises. Metallurg, 12, 23–26.
- 22. Chevrel S., Bourguignon A. 2016. Application of optical remote sensing for monitoring environmental impacts of mining: from exploitation to postmining land surface remote sensing. Environment and Risks, 12, 191–220.
- 23. Chimitdorzhieva G.D., Egorova R.A., Mikheev E.Yu., Tsybenov Yu.B. 2015. Carbon fluxes in steppe ecosystems (on the example of Southern Transbaikalia). Plant world of Asian Russia, 2(6), 33–39.
- 24. Climate: Greenhouse gas emissions management. 2018. Gazprom. Available online: https://sustainability.gazpromreport.ru/2018/4-ecology/4-3-gasemissions/ (accessed on 10 August 2023).
- 25. Climate agenda in the oil and gas industry. 2021. Available online: https://oilcapital.ru/article/general/15-01-2021/klimaticheskaya-povestka-v-neftegazovoy-otrasli (accessed on 10 August 2023).
- 26. CO2 abatement: Exploring options for oil and natural gas companies. 2020. Available online: https://www.mckinsey.com/industries/oil-and-gas/our-insights/co2-abatement-exploring-options-for-oil-and-natural-gas-companies (accessed on 10 August 2023).
- 27. Craig M.J.K. Life Extension of Oil and Gas Processing Plants. 2014. Applied Mechanics Reviews 46(5), 143–145.
- 28. Decarbonization of the oil and gas industry: international experience and priorities of Russia. 2021. Available online: https://www.google.com/url?esrc=s&q=&rct=j&sa=U&url=https://energy.skolkovo.ru/downloads/documents/SEneC/Research/SKOLKOVO_EneC_Decarbonization_of_oil_and_gas_RU_22032021.pdf&ved=2ahUKEwiS8sfM7KbzAhUK_CoKHY X3CIgQFnoECAUQAg&usg=AOvVaw15YjHzOf YX9FSwl6CVIfNA (accessed on 10 August 2023).
- 29. Deng L., Adams T.A. 2020 Techno-economic analysis of coke oven gas and blast furnace gas to methanol process with carbon dioxide capture and utilization. Energy Conversion and Management 204. DOI: 10.1016/j.enconman.2019.112315.
- 30. Di Vita G., Pilato M., Pecorino B., Brun F., D’Amico M. 2017. A review of the role of vegetal ecosystems in CO2 capture. Sustainability, 9(10). DOI: 10.3390/su9101840.
- 31. Drozdova T.I., Sukovatikov R.N. 2017. Environmental risk from emissions of pollutants during the combustion of associated petroleum gas of an oil and gas condensate field. XXI century. Technosphere safety 3, 88–101.
- 32. Dzhevaga N.V., Borisova D.D. 2021. Analysis of Air Monitoring System in Megacity on the Example of St. Petersburg. Journal of Ecological Engineering, 22(4), 175–185. DOI: 10.12911/22998993/134076.
- 33. Eduardo P.O. 2017. Atmospheric impacts of the oil and gas industry. Elsevier, 2, 11–22. DOI: 10.1016/B978-0-12-801883-5.00002-4.
- 34. Environmental threats of hydrocarbons. 2019. Available online: https://ac.gov.ru/files/publication/a/1105.pdf (accessed on 10 August 2023).
- 35. Eremeeva A.M., Kondrasheva N.K., Khasanov A.F., Oleynik I.L. 2023. Environmentally friendly diesel fuel obtained from vegetable raw materials and hydrocarbon crude. Energies, 16(5), 2121–2121. DOI: 10.3390/en16052121.
- 36. Extraction of oil raw materials. 2021 Ministry of Energy of the Russian Federation. Available online: https://minenergo.gov.ru/node/1209 (accessed on 10 August 2023).
- 37. Federal State Statistics Service. 2022. Available online: https://rosstat.gov.ru/folder/11194 (accessed on 10 August 2023).
- 38. Fedorov B.G., Moiseyev B.N., Sinyak Yu.V. 2018. the absorbing ability of the woods of Russia and emissions of carbon dioxide power objects. Studies on Russian Economic Development, 3, 127–142.
- 39. Fernandes A., Santos M. 2022. Model of emissions of greenhouse gases (GHG’s) in the oil and gas industry. Journal of Environmental Management and Sustainable Development, 1, 106–133. DOI: 10.5585/geas.v1i1.13.
- 40. Ferwerda J.G., Skidmore A.K., Mutanga O. 2015. Nitrogen detection with hyperspectral normalized ratio indices across multiple plant species. International Journal of Remote Sensing, 26(18), 4083–4095.
- 41. Filantropova V.A., Sham P.I. 2021. On atmospheric air pollution by enterprises of ferrous metallurgy. Bulletin of Priazov State Technical University, Series: Technical Sciences, 11, 300–303.
- 42. Galenovich A.Yu. 2021. Regulation of Greenhouse emissions: Risks and opportunities for Russia’s Socio-Economic Development. Moscow, Russia.
- 43. Gan Y., Griffin W.M. 2018. Analysis of life-cycle GHG emissions for iron ore mining and processing in China-Uncertainty and trends. Resources Policy, 58, 90–96.
- 44. Gorbachev A.V., Gorlenko N.V. 2019. Assessment of ecological and economic damage caused by the combustion of associated petroleum gas at the Yaraktinskoye oil and gas condensate field. XXI century. Technosphere safety, 3(15), 366–374.
- 45. Guerra D.D., Iakovleva E.V., Shklyarskiy A.Y. 2020. Alternative measures to reduce carbon dioxide emissions in the Republic of Cuba. Journal of Ecological Engineering, 21(4), 55–60.
- 46. Guilherme V., Cunha M., Manuel Sá M., Oliveira-Silva C. 2021. Offsetting the impact of CO2 emissions resulting from the transport of Maiêutica’s Academic Campus Community. Sustainability, 13. DOI: 0.3390/su131810227.
- 47. Hasanbeigi A., Arens M., Cardenas J.C.R., Price L., Triolo R. 2017. Comparison of carbon dioxide emissions intensity of steel production in China, Germany, Mexico, and the United States. Resources, Conservation and Recycling, 113, 127–139. DOI: 10.1016/j.resconrec.2016.06.008.
- 48. Hasanbeigi A., Price L., Chunxia Z., Aden N., Xiuping L., Fangqin S. 2014. Comparison of iron and steel production energy use and energy intensity in China and the U.S. Journal of Cleaner Production, 65, 108–119. DOI: 10.1016/j.jclepro.2013.09.047.
- 49. Heinrichs H.U., Markewitz P. 2017. Long-term impacts of a coal phase-out in Germany as part of a greenhouse gas mitigation strategy. Applied Energy, 192, 234–246. DOI: 10.1016/j.apenergy.2017.01.065.
- 50. Himenkov A.N. 2020. Geosystems of gas-saturated permafrost rocks. Arctic and Antarctic, 2, 65-106.
- 51. Hornby-Anderson S. 2020. Educated use of DRI/ HBI improves EAF energy efficiency and yield and downstream operating results. Proc. of 7th European Electric Steelmaking Conference, 9–26.
- 52. Hornby-Anderson S., Metius G., McClelland J. 2014. Future green steelmaking technologies. Proc. of 60th Electric Furnace Conference, 91–175.
- 53. Iron ore mining in the world and in Russia. 2020. Available online: https://dprom.online/metallurgy/dobycha-zheleznoj-rudy-v-mire-i-v-rossii/ (accessed on 10 August 2023).
- 54. Ivanov A.V., Smirnov Y.D., Chupin S.A. 2021. Development of the concept of an innovative laboratory installation for the study of dust-forming surfaces. Journal of Mining Institute, 251, 757–766. DOI: 10.31897/PMI.2021.5.15.
- 55. John J., Jaganathan R., Dharshan Shylesh D.S. 2022. Mapping of Soil Moisture Index Using Optical and Thermal Remote Sensing. Lecture Notes in Civil Engineering, 171, 759–767. DOI:10.3389/fdata.2019.00037.
- 56. Jungin L., Tayfun B. 2021. Mitigating greenhouse gas intensity through new generation techniques during heavy oil recovery. Journal of Cleaner Production, 286, article ID 124980. DOI: 10.1016/j.jclepro.2020.124980.
- 57. Kharyonovsky A.A., Danilova M.Yu. 2017. Protection of the atmosphere at the enterprises of coal industry. Bulletin of Samara Municipal Institute of Management, 2, 48–52.
- 58. Khokhlov A.V. 2020. Reference materials on the geography of the world economy 2020. Statistical collection. Moscow, Russia.
- 59. Kholod N., Evans M., Pilcher R.C., Roshchanka V., Ruiz F., Coté M., Collings R. 2020. Global methane emissions from coal mining to continue growing even with declining coal production. Journal of Cleaner Production, 256, 1-12. DOI: 10.1016/j.jclepro.2020.120489.
- 60. Kirschen M., Badr K., Pfeifer H. 2011. Influence of direct reduced iron on the energy balance of the electric arc furnace in steel industry. Energy, 36, 6146–6155. DOI: 10.1016/j.energy.2011.07.050.
- 61. Knizhnikov A.Yu., Kutepova E.A. 2015. An integrated approach to solving the problem of burning associated petroleum gas in Russia. Territory of Neftegaz, 2, 66–67.
- 62. Korobova O.S. 2014. Possibilities of use of potential of decrease issues of greenhouse gases of the region. RUDN Journal of ecology and life safety, 2, 68–74.
- 63. Koroleva N.E. 2016. Main Habitat Types of “Russian Svalbard”. Proceedings of the Karelian Research Centre of the Russian Academy of Sciences, 7, 3–23.
- 64. Krasutsky B.V. 2018. Absorption of carbon dioxide woods of Chelyabinsk Region: modern ecological and economical aspects. Tyumen State University Herald. Natural Resourse Use and Egology, 4(3), 57–68. DOI: 10.21684/2411-7927-2018-4-3-57-68.
- 65. Kurbangulov S.R., Fakhrutdinov R.Z., Ibragimov R.K., Zinnurova O.V., Ibragimova D.A. 2016. Problems and prospects of using associated petroleum gas in oil fields. Bulletin of Kazan Technological University, 12, 55–59.
- 66. Kurganova I.N. 2013. Carbon dioxide emission from soils of Russian terrestrial ecosystems. Interim Report, IR-02-070, IIASA, Laxenburg, Austria.
- 67. Kusumaning A.A., Lee H.-Y., Pan W.-C., Tsai H.-J., Chang H.-T., Candice Lung S.-C., Su H.-J., Yu C.-P., Ji J.S., Wu C.-D., Spengler J.D. 2021. Is green space exposure beneficial in a developing country? Landscape and Urban Planning, 215, article ID 104226.
- 68. Laefer D.F. 2019. Harnessing remote sensing for civil engineering: then, now, and tomorrow. Lecture Notes in Civil Engineering, 33, 3 – 30. DOI: 10.1007/978-981-13-7067-0_1.
- 69. Lalit K., Mutanga O. 2017. Remote sensing of above-ground biomass. Remote Sensing, 9(9), 1–8. DOI: 10.3390/rs9090935.
- 70. Lancon O., Berna H. 2018. Contribution of oil and gas production in The US to the climate change. Proc. of SPE annual technical conference and exhibition. DOI: 10.2118/191482-MS.
- 71. Lapteva A.V., Lisienko V.G., Chesnokov Yu.N. 2020. Carbon footprint of aluminum production in the production of alumina by the Bayer method. Environmental safety Management system, 14, 264–268.
- 72. Lisienko V.G., Chesnokov Yu.N., Lapteva A.V. 2016. Assessment of various processes of iron and steel production by CO2 emissions. Environmental safety Management system, 10, 119–122.
- 73. Lisienko V.G., Chesnokov Yu.N., Lapteva A.V. 2021. Emission of gases in the production of raw materials for metallurgy. Environmental safety Management system, 15, 130–136.
- 74. Liu N., Harper R.J., Handcock R.N., Evans B., Sochacki S.J., Dell B., Walden L.L., Liu S. 2017. Seasonal timing for estimating carbon mitigation in revegetation of abandoned agricultural land with high spatial resolution remote sensing. Remote Sensing, 9(6), 545. DOI: 10.3390/rs9060545.
- 75. Lobacheva O.L., Dzhevaga N.V. 2021. The experimental study of innovative methods regarding the removal of Sm(III). Applied Sciences, 11, article ID 7726. DOI: 10.3390/app11167726.
- 76. Lungen H.B. 2014. Opportunities and limits for reducing harmful CO2 emissions in the production and use of steel in Europe. Ferrous Metals, 8, 49–55.
- 77. Mancini M.S., Serena M., Galli A., Niccolucci V., Lin D., Bastianoni S., Wackernagel M., Marchettini N. 2016. Ecological footprint: refining the carbon footprint calculation. Ecological Indicators, 61, 390–403. DOI: 10.1016/j.ecolind.2015.09.040.
- 78. Matvienko N.G., Pihlak A.-T.A. 2016. Processes of deoxygenation of the mine atmosphere with modern mining technologies. Mining information and analytical bulletin, 4, 9–16.
- 79. Mendes G.V., Lopes L.A.S., da Silva Júnior O.S., Perucci F.O., Heringer F.M. 2020. Analysis of greenhouse gases and atmospheric pollutants emissions by helicopters in the oil and gas industry. Proc. of International Joint conference on Industrial Engineering and Operations Management, 337. DOI: 10.1007/978-3-030-56920-4_26.
- 80. Meziane А., Beauquin J.L., Sochard S., Serra S., Reneaume J.M., Stouffs Р. 2020. Exergoeconomic optimization of oil and gas production systems. Proc. of the SPE Europec, paper ID SPE-200607MS. DOI: 10.2118/200607-MS.
- 81. Motazedi K., Abella J.P., Bergerson J.A. 2017. Techno-economic evaluation of technologies to mitigate greenhouse gas emissions at North American refineries. Environmental science and technology, 51(3), 1918–1928. DOI: 10.1021/acs.est.6b04606.
- 82. Muller S., Lai F., Beylot A., Boitier B., Villeneuve J. 2020. No mining activities, no environmental impacts? Assessing the carbon footprint of metal requirements induced by the consumption of a country with almost no mines. Sustainable Production and Consumption, 22, 24–33.
- 83. Nauta A.L., Heijmans M.P.D., Blok D., Limpens J., Elberling B., Gallagher A., Li B., Petrov R.E., Maximov T.C., van Huissteden J., Berendse F. 2015. Permafrost collapse after shrub removal shifts tundra ecosystem to a methane source. Nature Climate Change, 5, 67–70. DOI: 10.1038/nclimate2446.
- 84. Nedelin S. The carbon footpint of the Russian metallurgy. 2021. Available online: http://www.metalsmining.ru/ru/page/art1_carbonprint.html (accessed on 10 February 2022).
- 85. Nikonova R.A., Dryagina D.R. 2018. Reduction of greenhouse gas emissions during hydrocarbon production. Modern innovations, 3(25), 8–9.
- 86. Oberemok I.A. 2017. Methane emissions from coal mining: environmental aspects. Creativity of young people is a step into a successful future, 364–366.
- 87. Ojijiagwo E., Chike F.O., Emekwuru N. 2017. Development of a framework for reduction of flare gas in an oil and gas processing environment. Petroleum and Coal, 59, 662–671.
- 88. On the state and protection of the environment of the Russian Federation in 2020. 2021. State report: Ministry of Natural Resources of Russia.
- 89. Osička J., Kemmerzell J., Zoll M., Lehotský L., C ̌ernoch F., Knodt M. 2020. What’s next for the European coal heartland? Exploring the future of coal as presented in German, Polish and Czech press. Energy Research & Social Science, 61, 1–27. DOI: 10.1016/j.erss.2019.101316.
- 90. Pankov D.A., Afanasiev V.Ya. 2020. Global coal production and consumption: prospects for Russian exporters. Coal market, 11, 67–70. DOI:10.18796/0041-5790-2020-11-67-70.
- 91. Paris Agreement. United Nations Framework Convention on Climate Change. 2015. UNFCCC.
- 92. Pashkevich M.A., Danilov A.S. 2023. Ecological security and sustainability. Journal of Mining Institute, 260, 153–154.
- 93. Pauluzzi D., Martinis A. 2018. Sustainable decrease of CO2 emissions in the steelmaking industry by means of the energiron direct reduction technology. AIST.
- 94. Petrov D.S., Yakusheva A.M. 2022. Assessment of the ecological state of small rivers of St. Petersburg according to the benthic macroinvertebrates indicators in 2019–2021. Vestnik of Saint Petersburg University. Earth Sciences, 67(3), 529–544. DOI: https://doi.org/10.21638/spbu07.2022.308.
- 95. Petrov I.V., Mihajlov S.J. 2019. Taking into account of factors influencing on a choice of actions for reduction of greenhouse gases emissions. Mining Informational and Analytical Bulletin, 6, 313–317.
- 96. Petrov R.E., Maksimov T.Kh., Karsanaev S.V. 2018. Study of interannual and seasonal dynamics of carbon balance variability and permafrost in a typical tundra ecosystem in northeastern Russia. Natural resources of the arctic and subarctic, 26(4), 89–96.
- 97. Petrova T.A., Rudzisha E., Alekseenko A.V., Bech J., Pashkevich M.A. 2022. Rehabilitation of disturbed lands with industrial wastewater sludge. Minerals, 12, 376. DOI: https://doi.org/10.3390/ min12030376.
- 98. Plan for carbon management until 2035. 2020. Rosneft. Available online: https://www.rosneft.ru/ docs/report/2020/ru/strategy/carbon-managementplan-2035/index.html (accessed on 10 August 2023).
- 99. Purtova E.E., Koryakina A.E. 2014. Application of the best available technologies to reduce greenhouse gas emissions in the implementation of Gazprom’s sustainable development strategy. Advances in chemistry and chemical technology, 4(153), 505–508.
- 100. Raimi D. 2020. The greenhouse gas effects of increased US oil and gas production. Energy Transit, 4, 45–56, DOI: 10.1007/s41825-020-00022-1.
- 101. Renn O., Marshall J.P. 2016. Coal, nuclear and renewable energy policies in Germany: From the 1950s to the “Energiewende”. Energy Policy, 99, 224–232. DOI: 10.1016/j.enpol.2016.05.004.
- 102. Rentier G., Lelieveldt H., Kramer G.J. 2019. Varieties of coal-fired power phase-out across Europe. Energy Policy, 132, 620–632. DOI: 10.1016/j.enpol.2019.05.042.
- 103. Ritchie А. 2013. Scattered and dissonant: the clean air act, greenhouse gases, and implications for the oil and gas industry. Environmental Law, 43, article ID 2256967. DOI: 10.2139/ssrn.2256967.
- 104. Romanovskaya A.A., Nakhutin A.I., Guitarsky M.L. 2020. National report on the inventory of anthropogenic emissions from sources and removals by sinks of greenhouse gases not regulated by the Montreal Protocol for 1990–2017, Part 1.
- 105. Safe development: industrial and environmental safety, labor protection, energy efficiency, and energy conservation. Greenhouse gas emissions. 2016. Available online: https://csr2016.gazpromneft.ru/pdf/csr/ru/safe-development_environment-and-resources_ghg-emissions.pdf (accessed on 10 August 2023).
- 106. Sattarov R.M., Tukhfatov B.Z. 2016. Environmental problems associated gas utilization in oil fields of Western Kazakhstan. Oil and Gas Exposition, 6(24), 62–65.
- 107. Seward A., Ashraf S., Reeves R., Bromley C. 2018. Improved environmental monitoring of surface geothermal features through comparisons of thermal infrared, satellite remote sensing and terrestrial calorimetry. Geothermics, 73, 60–73. DOI: 10.1016/j.geothermics.2018.01.007.
- 108. Shpirt M.Ya., Goryunova N.P. 2019. Main principles of decreasing the emission of greenhouse gases formed in the production and use of fossil fuels. Solid fuel chemistry, 6, 50–58.
- 109. Slastunov S.V., Mazanik E.V., Sadov A.P., Khautiev A.M.-B., Komissarov I.A. 2021. Pilotscale studies into methane recovery from minedout voids of coal mines. Mining Informational and Analytical Bulletin, 5, 134–145. DOI: 10.25018/0 236_1493_2021_5_0_134.
- 110. Smirnov Yu.D., Penezeva D.V. 2023. Experimental justification for converting paper, cardboard and plant waste into biomats. Environmental Geochemistry and Health, 45, 215–225. DOI: 10.1007/s10653-022-01305-w.
- 111. Sozina I.D., Danilov A.S. 2023. Microbiological remediation of oil-contaminated soils. Journal of Mining Institute, 260, 297–312. DOI: https://doi.org/10.31897/PMI.2023.8.
- 112. State report on the state and use of mineral resources of the Russian Federation in 2019. 2020. Ministry of Natural Recourses and Environment of Russian Federation.
- 113. Titlyanova A.A., Shibareva S.V. 2017. New estimates of phytomass reserves and net primary production of steppe ecosystems in Siberia and Kazakhstan. Izvestiya RAN. Geographic Series, 4, 43–55.
- 114. Top steel-producing companies 2020. 2021. Worldsteel association. Available online: https:// www.worldsteel.org/steel-by-topic/statistics/topproducers.html (accessed on 10 August 2023).
- 115. Tovarovsky I.G. 2017. Coke-saving energy-saving technologies of blast furnace smelting. Fundamental and applied problems of ferrous metallurgy: Collection of scientific papers, 14, 19–30.
- 116. Van Huissteden J., Dolman A.J. 2014. Soil carbon in the Arctic and the permafrost carbon feedback. Current Opinion in Environmental Sustainability, 4(5), 545–551.
- 117. Wang С., Ryman C., Dahl J. 2009. Potential CO2 emission reduction for BF-BOF steelmaking based on optimised use of ferrous burden materials. International Journal of Greenhouse Gas Control, 3, 29–38. DOI: 10.1016/j.ijggc.2008.06.005.
- 118. Wang H., Chu M., Guo T., Zhao W., Feng C., Liu Z., Tang J. 2016. Mathematical simulation on blast furnace operation of coke oven gas injection in combination with top gas recycling. Steel Research International, 87, 539–549. DOI: 10.1002/srin.201500372.
- 119. World direct reduction statistics. 2018. Midrex. Available online: https://www.midrex.com/wp-content/uploads/Midrex_STATSbookprint_2018Final-1.pdf (accessed on 10 August 2023).
- 120. Xu D., Wang H., Xu W., Luan Z., Xu X. 2021. LiDAR applications to estimate forest biomass at individual tree scale: opportunities, challenges and future perspectives. Forests, 12(5), 1–19. DOI: 10.3390/f12050550.
- 121. Yang L., Jiang T., Guang-hui L., Guo Y. 2017. Discussion of carbon emissions for charging hot metal in EAF steelmaking process. High temperature materials and processes, 36, 615-621. DOI: 10.1515/htmp-2015-0292.
- 122. Yude P., Birdsey R.A., Fang J., Houghton R., Kauppi P.E., Kurz W.A., Phillips O.L. 2011. A large and persistent carbon sink in the world’s forests. Science, 333(6045), 988–93. DOI: 10.1126/science.1201609.
- 123. Zamolodchikov D.G., Grabovsky V.I., Kurts V. 2014. Management of balance of carbon of the woods of Russia: Last, Present and Future. Sustainable Forestry, 2(39), 2–31.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-1dc74e90-a586-455b-9761-4a8c8fc27ddb