Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2023 | Vol. 17, no 3 | 19--30
Tytuł artykułu

Effect of Non-Metallic Inclusions on the Hot Ductility of High-Mn Steels

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of the work was to determine the effect of non-metallic inclusions on the hot ductility of two newly developed high-Mn austenitic steels (27Mn-4Si-2Al and 24Mn-3Si-1.5Al-Ti). For this purpose, a hot tensile test was carried out in the temperature range from 1050°C to 1200°C with a constant strain rate of 2.5⸱10-3 s-1. The tests were performed on the Gleeble 3800 thermomechanical simulator. Hot ductility of tested steels was defined by determining the reduction in area (% RA). Examined steels demonstrate diversified hot ductility. Clearly higher hot ductility was noted for the 24Mn-3Si-1.5Al-Ti steel. The reduction in area of this steel in the temperature range from 1050°C to 1200°C decreases from approx. 90% to about 58%, while the reduction in area of the 27Mn-4Si-2Al steel, in the same temperature range, decreases from approx. 66% to about 34%. The presence of single, regular-shaped AlN particles and complex MnS-AlN-type non-metallic inclusions was revealed in the 27Mn-4Si-2Al steel. Whereas fine (Ce, La, Nd)S-type sulphides, properly modified with rare earth elements, were identified in the 24Mn-3Si-1.5Al-Ti steel. The AlN-type inclusions and complex MnS-AlN-type inclusions were not revealed in the 24Mn-3Si-1.5Al-Ti steel. This is due to the presence of Ti microaddition, the concentration of which guaranteed binding of the whole nitrogen into stable TiN-type nitrides. Sulphides, disclosed in the 24Mn-3Si-1.5Al-Ti steel, are globular or slightly elongated in the direction of plastic deformation, as confirmed by a very low value of the elongation factor equal 1.48. This creates the opportunity to produce sheets of high strength and ductility and low anisotropy of mechanical properties.
Wydawca

Rocznik
Strony
19--30
Opis fizyczny
Bibliogr. 45 poz., fig., tab.
Twórcy
  • Faculty of Mechanical Engineering, Department of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18A, 44-100 Gliwice, Poland, marek.opiela@polsl.pl
  • Faculty of Mechanical Engineering, Department of Engineering Processes Automation and Integrated Manufacturing Systems, Silesian University of Technology, ul. Konarskiego 18A, 44-100 Gliwice, Poland, gabriela.fojt-dymara@polsl.pl
Bibliografia
  • 1. Fonstein N. Advanced high strength sheet steels. Physical metallurgy, design, processing and properties. Springer International Publishing, Switzerland, 2015.
  • 2. Kuziak R., Kawalla R., Waengler S. Advanced high strength steels for automotive industry. Archives of Civil and Mechanical Engineering 2008; 8(2): 103–117.
  • 3. Takahashi M. Development of high strength steels for automobiles. Nippon Steel Technical Report 2003; 88(7): 2–7.
  • 4. Lee S., Lee S-Y., Han J., Hwang B. Deformation bahavior and tensile properties of an austenitic Fe- 24Mn-4Cr-0.5C high-manganese steel: Effect of grain size. Materials Science and Engineering A 2019; 742: 334–343.
  • 5. Wesselmecking S., Haupt M., Ma Y., Song W., Hirt G., Bleck W. Mechanism-controlled thermome- chanical treatment of high manganese steels. Materials Science and Engineering A 2021; 828: 1–9.
  • 6. Sozańska-Jędrusik L., Mazurkiewicz J., Borek W., Matus K. Carbides analysis of the high strength and low density Fe-Mn-Al-Si steels. Archives of Metallurgy and Materials 2018; 63(1): 265–276.
  • 7. De Cooman B.C., Estrin Y., Kim S.K. Twinning induced plasticity (TWIP) steels. Acta Materialia 2018; 142: 283–362.
  • 8. Fojt-Dymara G., Opiela M., Borek W. Susceptibility of high-manganese steel to high-temperature cracking. Materials 2022; 15(22): 1–11.
  • 9. Jabłońska M., Śmiglewicz A., Niewielski G. The effect of strain rate on the mechanical properties and microstructure of the high-Mn steel after dynamic deformation tests. Archives of Metallurgy and Materials 2015; 60(2): 123–126.
  • 10. Liu Ch., Shen S., Xie P., Wu C. Deformation behaviors of a Fe-20Mn-3Al-3Si TRIP steel under quasi- static compression and dynamic impact. Materials Characterization 191; 1–10
  • 11. Pierce D.T., Benzing J.T., Jiménez J.A., Hickel T., Bleskov I., Keum J., Raabe D., Witting J.E. The influence of temperature on the strain-hardening bahavior of Fe-22/25/28Mn-3Al-3Si TRIP/TWIP steels. Materialia 2022; 22: 1–12.
  • 12. Opiela M., Fojt-Dymara G., Grajcar A., Borek W. Effect of grain size on the microstructure and strain hardening behavior of solution heat-treated low-C high-Mn steel. Materials 2020; 13(7): 1–13.
  • 13. Frommeyer G., Brüx U., Neumann P. Supra-ductile and high-strength manganese TRIP/TWIP steels for high energy absorption purposes. ISIJ International 2003; 43(3): 438–446.
  • 14. Allain S., Chateau J.P., Bouaziz O. A physical model of the twinning-plasticity effect in a high manganese austenitic steel. Materials Science and Engineering A 2004; 387: 143–147.
  • 15. Kim J.K., Chen L., Kim H.S., Kim S.K., Estrin Y., De Cooman B.C. On the tensile behavior of high-manganese twinning-induced plasticity steel. Metallurgical and Materials Transactions A 2009; 40: 3147–3158.
  • 16. Liu H., Liu J., Wu B., Shen Y., He Y., Su X. Effect of Mn and Al contents on hot ductility of high al- loy Fe-xMn-C-yAl austenite TWIP steels. Materials Science and Engineering A 2017; 708: 360–374.
  • 17. Mejia I., Salas-Reyes A.E., Calvo J., Cabrera J.M. Effect Ti and B microadditions on the hot ductility behavior of a high-Mn austenitic Fe-23Mn-1.5Al- 1.3Si-0.5C TWIP steel. Materials Science and Enineering A 2015; 648: 311–329.
  • 18. Kang S.E., Banerjee J.R., Maina E.M., Mintz B. Influence of B and Ti on hot ductility of high Al. and high Al, Nb containing TWIP steels. Materials Science and Technology 2013; 29: 1225–1232.
  • 19. Liu H., Liu J., Michelic S.K., Shen S., Su X., Wu B., Dinh H. Characterization and analysis of non-metallic inclusions in low carbon Fe-Mn-Si-Al TWIP steels. Steel Research International 2016; 87: 1723–1732.
  • 20. Li D., Feng Y., Song S., Liu Q., Bai Q., Wu G., Ren F. Influence of Nb-microalloying on microstructure and mechanical properties of Fe-25Mn-3Si-3Al TWIP steel. Materials and Design 2015; 84: 238–244.
  • 21. Park J.H., Kim D-J., Min D.J. Characterization of nonmetallic inclusions in high-manganese and aluminium-alloyed austenitic steels. Metallurgical and Materials Transactions A 2012; 43(7): 2316–2324.
  • 22. Wang Y-N., Yang J., Wang R-Z., Xin X-L., Xu L-Y. Effects of non-metallic inclusions on hot ductility of high manganese TWIP steels containing different aluminium contents. Metallurgical and Materials Transactions B 2016; 47: 1697–1712.
  • 23. Hamada A.S., Karjalainen I.P. Hot ductility bahaviour of high-Mn TWIP steels. Materials Science and Engineering A 2011; 528: 1819–1827.
  • 24. Jang J-M., Kim S-J., Kang N.H., Cho K.M., Suh D.W. Effect of annealing conditions on microstructure and mechanical properties of low carbon, manganese transformation-induced plasticity steel. Metals and Materials International 2009; 15: 909–916.
  • 25. Kim J., Lee S-J., De Cooman B.C. Effect of Al on the stacking fault energy of Fe-18Mn-0.6C twinning-induced plasticity. Scripta Materialia 2011; 65: 363–366.
  • 26. Mintz B. The influence of composition on the hot ductility of steels and to the problem of transverse cracking. ISIJ International 1999; 39: 833–855.
  • 27. Mintz B., Yue S., Jonas J.J. Hot ductility of steels and its relationship to the problem of transverse cracking during continuous casting. International Materials Reviews 1991; 36: 187–217.
  • 28. Kang S.E., Tuling A., Banerjee J.R., Gunawarnada W.D, Mintz B. Influence of B on hot ductility of high Al, TWIP steels. Materials Science and Technology 2011; 27: 95–100.
  • 29. Kang S.E., Banerjee J.R., Mintz B. Influence of S and AlN on hot ductility of high Al, TWIP steels. Materials Science and Technology 2012; 28: 589–596.
  • 30. Kang S.E., Banerjee J.R., Mintz B. The hot ductility of Nb/V containing high Al, TWIP steels. Materials Science and Technology 2011; 27: 909–915.
  • 31. Kang S.E., Banerjee J.R., Tuling A. Influence of P and N on hot ductility of high Al, boron containing TWIP steels. Materials Science and Technology 2014; 30: 1328–1335.
  • 32. Abushosha R., Comineli O., Mintz B. Influence of Ti on hot ductility of C-Mn-Al steels. Materials Science and Technology 1999; 15: 278–286.
  • 33. Qaban A., Mintz B., Kang S.E., Naher S. Hot ductility of high Al TWIP steels containing Nb and Nb-V. Materials Science and Technology 2017; 33: 1645–1656.
  • 34. Gigacher G., Krieger W., Scheler P.R., Thomser C. Non-metallic inclusions in high-manganese steels. Steel Research International 2005; 76(9): 644–649.
  • 35. Grässel O., Frommeyer G., Derder C., Hofmann H. Phase transformation and mechanical properties of Fe-Mn-Si-Al TRIP steels. Journal Physique 1997; 7: 338–388.
  • 36. Grässel O., Kruger L., Frommeyer G., Meyer L.W. High-strength Fe-Mn-(Al,Si) TRIP/TWIP steels development – properties – application. International Journal of Plasticity 2000; 16: 391–1409.
  • 37. Pichler A., Stiaszny P. TRIP steel with reduced silicon content. Steel Research 1999; 70(11): 459–465.
  • 38. Frommeyer G., Brüx U. Microstructures and mechanical properties of high-strength Fe-Mn-Al-Si light-weight TRIPLEX steels. Steel Research International 2006; 77(9–10): 627–633.
  • 39. Abushosha R., Ayyad S., Mintz B. Influence of cooling rate and MnS inclusions on the hot ductility of steels. Materials Science and Technology 1998; 14: 227–235.
  • 40. Opiela M., Grajcar A. Modification of non-metallic inclusions by rare-earth elements in microalloyed steels. Archives of Foundry Engineering 2012; 12(2): 129–134.
  • 41. Mintz B., Qaban A. The influence of precipitation, high levels of Al, Si, P and a small B addition on the hot ductility of TWIP and TRIP assisted steels: A critical review. Metals 2022; 12(3): 1–31.
  • 42. Borrmann L., Senk D., Steenken B., Rezende J. Influence of cooling and strain rates on the hot ductility of high manganese steels within the system Fe-Mn-Al-C. Steel Research International 2020; 92(2): 1–10.
  • 43. Kang S.E., Kang M.H., Mintz B. Influence of vanadium, boron and titanium on hot ductility of high Al TWIP steels. Materials Science and Technology 2020; 37: 42–58.
  • 44. Osinkolu G.A., Tacikowski M., Kobylanski A. Combined effect of AlN and sulphur on hot ductility of high purity iron-base alloys. Materials Science and Technology 1985; 1: 520–525.
  • 45. Fojt-Dymara G., Opiela M. Hot ductility behawior of Fe-0.05C-24Mn-3.5Si-1.6Al steel with Nb and Ti microadditions. International Journal of Modern Manufacturing technologies 2022; 2: 319–328.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-1cf1f5aa-6df3-48d3-8b63-10536d583214
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.