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MATHEMATICAL BIOLOGY

Bilel Elbetch (Saïda)

Effect of dispersal in single-species discrete
diffusion systems with source-sink patches

Abstract A multi-patch source-sink model with and without intraspecific compe-
tition in the sink patches is considered. First, we study the dynamics of the model
when the matrix of migration is irreducible and reducible. We show that, there is
a threshold number of source patches such that the population potentially becomes
extinct below the threshold and established above the threshold. Next, used the
theory of singular perturbation and theorem of Tikhonov, in the case of perfect mix-
ing, i.e. when the diffusion rate tends to infinity, we calculate the equilibrium of the
model and we give a good approximations of the solutions in this case. Second, we
determine, in some particular cases, the conditions under which fragmentation and
the existence of sink patches can lead to a total equilibrium population greater or
smaller than the sum of the carrying capacities of the source patches. Finally, we
study the effect of the rapid growth of the population in source patches and the
rapid death of the population in sink patches on the dynamics of the total equilib-
rium population and on the coexistence of the populations in the patches.
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1. Introduction Population dynamics is a wide field of mathematics,
which contains many problems, for example fragmentation of population and
the effect of migration in the general dynamics of population. Bibliographies
can be found in the work of Levin [29, 30] and Holt [26]. There are ecological
situations that motivate the representation of space as a finite set of patches
connected by migrations, for instance an archipelago with bird population
and predators. It is an example of insular bio-geography. A reference work
on mathematical models is the book of Levin et al. [31], whereas Hanski and
Gaggiotti [24] give a more ecological account of the subject. The standard
question in this type of biomathematical problems, is to study the effect
of migration on the general population dynamics, and the consequences of
fragmentation on the persistence or extinction of the population.

An ecological model is used to describe population changes in two habi-
tats, both occupied by the same species. One habitat is of high quality and
allows a population to increase, leading to a surplus. This is the source. The
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other habitat is of low quality, leading to a deficit that ordinarily would lead
to the habitat being abandoned. This is the sink. The source-sink model was
first proposed by biologist Crick 1970. In population ecology, the source-sink
model is used to describe how variation in habitat quality may affect the
population growth or decline of organisms.

In 2019, Wu et al. [39] studied the following two-patch source-sink model:
dx1
dt

= r1x1

(
1− x1

K1

)
+D(x2 − sx1),

dx2
dt

= r2x2

(
−1− x2

K2

)
+D(sx1 − x2),

(1)

where x1 and x2 represent population densities of the species in patch 1
and 2, respectively. The parameters ri > 0 and Ki > 0 are respectively
the intrinsic growth rate and the carrying capacity of patch i. Parameter D
represents the dispersal intensity while the parameter s reflects the dispersal
asymmetry. The authors show that the dispersal asymmetry can lead to either
an increased total size of the population in two patches, a decreased total size
with persistence in the patches, or even extinction in both patches. They
show also that for a large growth rate of the species in the source and a fixed
dispersal intensity:

• If the asymmetry is small, the population would persist in both patches
and reach a density higher than that without dispersal and the popu-
lation approaches its maximal density at an appropriate asymmetry.

• If the asymmetry is intermediate, the population persists in both patches
but reaches a density less than that without dispersal.

• If the asymmetry is large, the population goes to extinction in both
patches.

Arino et al. [4] also studied a source-sink model of n patches, where the
source patch follows a logistic growth rate, and the sink patch follows expo-
nential decay, i.e the model

dxi
dt

= rixi

(
1− xi

Ki

)
+D

∑n
j=1 γijxj , i = 1, . . . , s,

dxi
dt

= −rixi +D
∑n

j=1 γijxj , i = s+ 1, . . . , n,

(2)

where xi represent population densities of the species in the patch i. The
parameter D represents the dispersion rate of the population, γij ≥ 0 denote
the flux between patches j and i for i ̸= j. We denote Γ the matrix Γ :=
(γij)n×n with

γii = −
n∑

j=1,j ̸=i

γji. (3)
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For system (2), the authors proved the existence of a threshold number of
source patches such that the population potentially becomes extinct below
the threshold and persistent above the threshold.

Elbetch et al. [14, 15] have answered in the particular case of the n-source
0-sink patch model (i.e System (2) for n = s), which reads:

dxi
dt

= rixi

(
1− xi

Ki

)
+D

n∑
j=1

γijxj , i = 1, . . . , n, (4)

to the following important question:

Question 1.1 Is it possible, depending on the migration rate D, that the
total equilibrium population X∗

T (D) =
∑

i x
∗
i (D), where (x∗1(D), . . . , x∗n(D))

is the positive equilibrium of (4) be larger than the sum of the capacities∑
iKi ?

Note that, System (4) is studied also by Elbetch et al. [14] and Takeuchi [36]
in the case when the matrix Γ is symmetric, i.e. the flux between patches j
and i for i ̸= j is equal in both directions. We recall that, when the matrix
of migration Γ is irreducible, System (4) admits a unique positive equilib-
rium which is globally asymptotically stable (GAS), see [3, Theorem 2.2], [4,
Theorem 1] or [14, Theorem 6.1], when D → ∞, this equilibrium tends to∑

i δiri∑
i δ

2
i αi

(δ1, . . . , δn),

where αi = ri
Ki

and (δ1, . . . , δn)
T is the vector which generate the vector

space ker Γ. For the existence , uniqueness, and positivity of δ see Remark
3.1. Question 1.1 is of ecological importance since the answer gives the con-
ditions under which dispersal is either beneficial or detrimental to total equi-
librium population. Note that, this last question has been studied by many
researches ( see [1, 2, 5, 8, 9, 10, 11, 14, 15, 17, 18, 20, 21, 28, 41], [13] for
effect of nonlinear diffusion on the total biomass, and [22, 23] for susceptible-
infected-susceptible (SIS) patch-model). Elbetch et al. [14] proved that, if
all the patches do not differ with respect to the intrinsic growth rate (i.e.,
r1 = . . . = rn), then the effect of migration is always detrimental. In the
case when (K1, . . . ,Kn)

T ∈ ker Γ (if the matrix Γ is symmetric, the condition
(K1, . . . ,Kn)

T ∈ ker Γ means that the patches do not differ with respect to
the carrying capacity), migration has no effect on the total equilibrium popu-
lation. An example when the effect of migration is always beneficial, is in the
case when Γ is symmetric and all the patches do not differ with respect to the
parameter α = r/K quantifying intraspecific competition (i.e., α1 = . . . , αn)
(see also [15, Prop. 4.2] for another example when Γ is non symmetric).

It was shown by Arditi et al. [1, Proposition 2, page 54], for 2-source, 0-sink
patch model, that only three situations can occur: the case where the total
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equilibrium population is always greater than the sum of carrying capacities,
the case where it is always smaller, and a third case, where the effect of
migration is beneficial for lower values of the migration coefficient D and
detrimental for the higher values. More precisely, it was shown in [1] that, if
n = 2 in (4), the following trichotomy holds

• If X∗
T (+∞) > K1 +K2 then X∗

T (D) > K1 +K2 for all D > 0.

• If dX∗
T

dD (0) > 0 and X∗
T (+∞) < K1 +K2, then there exists D0 > 0 such

that X∗
T (D) > K1+K2 for 0 < D < D0, X∗

T (D) < K1+K2 for D > D0

and X∗
T (D0) = K1 +K2.

• If dX∗
T

dD (0) < 0, then X∗
T (D) < K1 +K2 for all D > 0.

Therefore, the condition X∗
T (D) = K1+K2 holds only for D = 0 and at most

for one positive value D = D0. The value D0 exists if and only if dX∗
T

dD (0) > 0
and X∗

T (+∞) < K1 +K2.
In [14, Section 5.2], Elbetch et al. have considered Model (4) for n = 3

with Γ symmetric, and shown by numerical simulations the following situa-
tions, which do not exist in the two-patch model:

• The case where dX∗
T

dD (0) < 0 and X∗
T (+∞) > K1 +K2 +K3.

• The case where dX∗
T

dD (0) > 0 and X∗
T (+∞) > K1 +K2 +K3 and there

exist values of D for which X∗
T (D) < K1 +K2 +K3.

• The case where dX∗
T

dD (0) < 0 and X∗
T (+∞) < K1 +K2 +K3 and there

exist values of D for which X∗
T (D) > K1 +K2 +K3.

Therefore the equality X∗
T (D) = K1 + K2 + K3 can occur for two positive

values of D, not only for a unique positive value as in the two-patch case.
In [15, Section 6], Elbetch et al. have reconsidered the three-patch model

with Γ not symmetric. The novelty when Γ is not symmetric is the existence
of three positive values of migration rate solution of the following equation:

Total equilibrium population = Sum of three carrying capacities,

i.e. the following situation hold:

• The case where dX∗
T

dD (0) > 0 and X∗
T (+∞) < K1 +K2 +K3, and there

exists three values 0 < D1 < D2 < D3 for which we have:

X∗
T (D) =

{
> K1 +K2 +K3 for D ∈]0, D1[∪]D2, D3[,
< K1 +K2 +K3 for D ∈]D1, D2[∪]D3,∞[.

For more details and the proof of some previous numerical results, see
the recent work of Elbetch [12], where it is studied the model (4) under the
assumption that some growth rates are much larger than the other.
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Recently, Yu et al. [40] considered a consumer-resource patch model, where
the consumer moves between multiple source-sink patches with both resource
and toxicant given by the following system:

dxi
dt

= N0i − µixi −
rixiyi

Γi(ki + xi)
, i = 1, . . . , n,

dyi
dt

= yi
( rixi
ki + xi

−mi − giyi
)
−D

(
siyi −

1

2
si−1yi−1 −

1

2
si+1 + yi+1

)
,

(5)

where i = i mod n, and "mod" means modula [42]. For example, y0 = yn
and yn+1 = y1. Variable xi represents the nutrient concentration and yi is
the consumer’s population density in patch i. Parameter N0i represents the
nutrient input, µi is the dilution rate of nutrient, Γi is the yield, or fraction of
nutrient per unit biomass. Parameter ri represents the consumer’s maximal
growth rate with infinite resource, ki is the half saturation coefficient, mi

is the mortality rate, and gi is the density-dependent loss rate. Parameter
D represents the diffusion rate, while si is the asymmetry in diffusion. Note
that, when si = 1 for all i, the diffusion is symmetric. Yu et al. [40] showed
the global stability of positive equilibria in System (5). They have shown also
that diffusion could make the consumer persists in sinks, even make it reaches
total population abundance larger than if non-diffusing. It is also shown that
under certain conditions, diffusion could make the total abundance less than
if non-diffusing, even make the consumer go into extinction in all patches.

An important result proven by Yu et al. [40] is that when toxicants are dis-
tributed homogeneously, asymmetric diffusion always makes the total abun-
dance less than if non-diffusing. For general information on the effect of asym-
metric diffusion, toxicant distribution, and geographic pattern of patches on
the total population abundance of the consumer, and also in the continuous
and discrete cases of (5), the reader is referred to the work of Yu et al. [40]
and Zhang et al. [42].

Our aim of the present paper, is to study the effect of the migration on the
total population with the assumption that some patches among the n patches
are sinks. Thus we generalize some results of [14, 15] for n−source, 0−sink
patch model to s−source, (n− s)−sink patch model and also we extend the
results proved by Wu et al. [39] for 1-source, 1-sink patch model.

The paper is organized as follows. In Section 2, some proprieties of 1-
source, 1-sink patch model (1) have been recalled as a function of the two
parameters γ1 and γ2 (see Theorem 2.2). Two-patch model with the growth
(resp. death) rate much larger than the death (resp. growth) rate is considered.
In both last cases, we compare the total equilibrium population with the
capacity (see Theorems 2.6 and 2.10). In Section 3, multi-patch source-sink
model with intraspecific competition in the sink patches is being described.
We prove that there exists a threshold number of source patches such that
the population becomes extinct below the threshold and persist above the
threshold (Theorem 3.3). The behavior of the model for large migration rate



56 Effect of dispersal in single-species discrete diffusion systems

is studied (Theorem 3.7). Total population abundance is analyzed also in some
homogeneous and heterogeneous particular case (Propositions 3.11, 3.12, and
3.16). The following both cases: death rates are much larger than the growth
rates and growth rates are much larger than the death rates are considered.
In Section 4, multi-patch source-sink model without intraspecific competition
in the sink patches is considered. In Appendix A, we give some properties of
the total equilibrium population. In Appendix B, we give some background
concepts and preliminaries results which are used in the analysis of the global
stability of our model.

2. Some preliminary results for the two-patch model with source-
sink patches In this section, we consider the 2-patch system with source-
sink dynamics given by:

dx1
dt

= a1x1

(
1− x1

L1

)
+D (γ2x2 − γ1x1) ,

dx2
dt

= a2x2

(
−1− x2

L2

)
+D (γ1x1 − γ2x2) ,

(6)

where x1 and x2 represent population densities of the species in patch 1 and
2, respectively. Patch 1 is assumed to be the source but patch 2 is the sink,
i.e. a1, a2 > 0. The parameters αi := ai/Li are the intraspecific competition
degree. Parameter D represents the dispersal intensity. We denote γ2 the
migration rate from source patch 2 to the sink patch 1 and γ1 from sink
patch 1 to source patch 2, the dispersal is symmetric if γ1 = γ2. This system
is studied in [39]. We recall some essential results of [39] as function of the
parameters γ1 and γ2. First of all, let’s start by recalling the global dynamics
of System (6).

2.1. Global dynamics We consider the following regions in the set of
parameters γ1 and γ2, denoted D0,D1 and D2 depicted in Figure 1 and defined
by: 

D0 =

{
(γ1, γ2) : γ2 ≥

a2
a1
γ1

}
,

D1 =

{
(γ1, γ2) :

a2
a1
γ1 < γ2 <

a2D

a1a2 +Da1
γ1

}
,

D2 =

{
(γ1, γ2) : γ2 ≥

a2D

a1a2 +Da1
γ1

}
.

(7)

The global dynamic of System (6) is described as follows.

Theorem 2.1 (Prop. 5.5 in [39]) Consider Model (6). Then, if (γ1, γ2) ∈
D0 ∪ D1, System (6) admits unique equilibrium in R2\{0} denoted E∗(D),
which is GAS, and if (γ1, γ2) ∈ D2, then the origin is GAS.
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0

D1

D0

D2

γ2 =
a2
a1
γ1

γ1

γ2

γ2 =
Da2

a1a2+Da1

Figure 1: Global stability of Model (6). In D0 and D1 the system has unique
equilibrium E∗(D) which is GAS. In the region D2, the system has the origin
as unique equilibrium which is GAS.

2.2. Total population abundance In this section, we recall the com-
parison given in [39, Proposition 5.11], between the total equilibrium popu-
lation

X∗
T (D) = x∗1(D) + x∗2(D), E∗(D) = (x∗1(D), x∗2(D)),

of (6) and carrying capacity L1, by analyzing the stable positive equilibrium
E∗(D). Note that, when there is no dispersal (i.e., D = 0), the total equi-
librium population is X∗

T (0) = L1. We consider the regions in the set of the
parameters γ1 and γ2, denoted L0, L1,L2, L3 and L4, depicted in Figure 2
and defined by:

If a2 ≥ a1 then


L0 =

{
(γ1, γ2) :

γ2
γ1
< a2

a1

}
,

L1 =
{
(γ1, γ2) :

γ2
γ1

≥ a2
a1

}
.

If a2 < a1 then


L2 =

{
(γ1, γ2) :

γ2
γ1

≤ a2
a1

}
,

L3 =
{
(γ1, γ2) :

a2
a1
< γ2

γ1
< L2(a1−a2)

a2(L1+L2)

}
,

L4 =
{
(γ1, γ2) :

γ2
γ1

≥ L2(a1−a2)
a2(L1+L2)

}
.

(8)

Theorem 2.2 The total equilibrium population described by (6) satisfies the
following properties

1. If a2 ≥ a1, let L0 and L1 be defined by (8). Then we have:
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Case a2 ≥ a1.
0

L1

L0

γ1

γ2 γ2
γ1

= a2
a1

Case a2 < a1.
0

L4

L3

L2

γ1

γ2
γ2
γ1

= L2(a1−a2)
a1(L1+L2)

γ2
γ1

= a2
a1

Figure 2: Qualitative properties of source-sink model (6). In L0 and L1 the
effect is detrimental with extinction in two patches for L0 and persistence
for L1. In L2 and L3, the effect is beneficial for D < D0 and detrimental for
D > D0 with persistence of the population in the region L2 and extinction in
the region L3. In L4, patchiness has a beneficial effect on the total equilibrium
population.

• if (γ1, γ2) ∈ L0 then X∗
T (D) ≤ L1 for all D ≥ 0. More over, there

is D∗ = γ2a1a2
γ1a2−γ2a1

, such that:{
0 < X∗

T (D) ≤ L1 If D < D∗,
X∗

T (D) = 0 If D ≥ D∗.
(9)

• if (γ1, γ2) ∈ L1 then 0 < X∗
T (D) ≤ L1 for all D ≥ 0.

2. If a2 < a1, let L2,L3 and L4 be defined by (8). Then we have:

• if (γ1, γ2) ∈ L2 then X∗
T (D) > L1 for D < D0 and X∗

T (D) < L1

for all D > D0, where

D0 =
(a1 − a2 ) (L1 + L2 )

(γ2 (a2 − a1 ) + γ1α1 (L1 + L2 )) (α1
−1 + α2

−1)
, with αi = ai/Li.

(10)
Moreover, there is D∗ ≥ D0 such that X∗

T (D) = 0 for all D ≥ D∗.

• if (γ1, γ2) ∈ L3 then we have{
X∗

T (D) ≥ L1 If D ≤ D∗,
0 < X∗

T (D) < L1 If D > D∗.
(11)

• if (γ1, γ2) ∈ L4, then X∗
T (D) ≥ L1 for all D ≥ 0.

Proof All the results were established by Wu at al. [39, Proposition 5.11].
Note that, the explicit expression (10) of D0 was not given in [39]. ■
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In biological terms, the results of the previous theorem for 1-source 1-sink
patch shows that, the dispersal asymmetry can lead to an increased total size
of the species in two patches, a decreased total size with persistence in the
patches, and even extinction in both patches. Comparing these results with
that of Arditi et al. [1, 2] for 1-source 1-source patch model, we deduce that
the existence of a sink patch among the two patches, can cause an extinction
of the total population in the two patches.

In the case of perfect mixing (i.e D → ∞), we have the following result
[39, Proposition 5.10]:

Proposition 2.3 We have:

X∗
T (∞) := lim

D→∞
X∗

T (D) =

 (γ1 + γ2)
γ2a1 − γ1a2

γ22a1/L1 + γ21a2/L2
if γ1/γ2 < a1/a2,

0 otherwise.

(12)

Wu et al. [39] proved that large dispersal intensity (i.e., D → ∞), the in-
termediate asymmetry γ1/γ2 can lead to population density higher than that
without dispersal, and extremely small asymmetry is still favorable, while
extremely large asymmetry is unfavorable: (i) When the dispersal asymme-
try is small, the species can approach a density larger than that without
dispersal, while it reaches its maximum value at an intermediate asymme-
try γ1

γ2
= a1−a2

2α2(L1+L2)
. (ii) When γ1/γ2 is extremely large, the species goes

to extinction in both patches. Mathematically speaking, we can rewrite the
following result [39, Proposition 5.10]:

Proposition 2.4 [39, Proposition 5.10] Assume that γ1
γ2
< a1

a2
. Consider the

total equilibrium population for D → ∞ given by (12). We have:

X∗
T (+∞)


> L1 if γ1

γ2
< a1−a2

α2(L1+L2)
,

= L1 if γ1
γ2

= a1−a2
α2(L1+L2)

,

< L1 if γ1
γ2
> a1−a2

α2(L1+L2)
.

(13)

Moreover, X∗
T (+∞) approaches its maximum value

γ22a2L1
L1 + L2

4(γ22a1L2 + γ21a2L1)

(
a1 − a2

α2(L1 + L2)

)2

at γ1
γ2

= a1−a2
2α2(L1+L2)

.

In the remainder of this section, we present our first result in this work.
More precisely, we study the effect of the rapid growth of the population in
the source patch and rapid death of the population in the sink patch on the



60 Effect of dispersal in single-species discrete diffusion systems

dynamics of the total equilibrium population and on the coexistence of the
population in both patches. Note that, these situations were not examined
in [4, 39]. Here, we study the total equilibrium population as a function of
the migration rate in the case where the growth (resp. death) rate is much
larger than the death (resp. growth) rate. In particular, we explicitly calculate
the total equilibrium in the both situations, its derivative in the absence of
the migration, its limit for large migration rate and we compare the total
equilibrium population with the carrying capacity of the source patch. First,
we start by the following situation:

2.3. The death rate is much larger than the growth rate In this
part, we consider the two-patch model (6) and we assume that the death rate
a2 is much larger than the growth rate a1. One can write the model in the
following way:

dx1
dt

= a1x1

(
1− x1

L1

)
+D (γ2x2 − γ1x1) ,

dx2
dt

=
a2
ϵ
x2

(
−1− x2

L2

)
+D (γ1x1 − γ2x2) ,

(14)

where ϵ is assumed to be a small positive number. First, we have the following
result:

Theorem 2.5 Let (x1(t, ϵ), x2(t, ϵ)) be the solution of System (14) with ini-
tial condition (x01, x

0
2) satisfying x0i ≥ 0 for i = 1, 2. Let z(t) be the solution

of the differential equation

dx1
dt

= a1x1

(
1− x1

L1

)
−Dγ1x1 =: φ(x1), (15)

with initial condition z(0) = x01. Then, when ϵ→ 0, we have

x1(t, ϵ) = z(t) + oϵ(1), uniformly for t ∈ [0,+∞) (16)

and, for any t0 > 0, we have

x2(t, ϵ) = oϵ(1), uniformly for t ∈ [t0,+∞). (17)

Proof When ϵ → 0, System (14) is a slow-fast system, with one slow vari-
able, x1, and one fast variable, x2. Tikhonov’s theorem [32, 37, 38] prompts
us to consider the dynamics of the fast variables in the time scale τ = 1

ϵ t.
One obtains

dx2
dτ

= a2x2

(
−1− x2

L2

)
+ ϵD(γ1x1 − γ2x2). (18)
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In the limit ϵ→ 0, we find the fast dynamics

dx2
dτ

= a2x2

(
−1− x2

L2

)
. (19)

The slow manifold is given by the equilibrium of System (19), i.e. x2 = 0,
which is locally asymptotically stable (LAS) in the positive axis. When ϵ goes
to zero, Tikhonov’s theorem ensures that after a fast transition toward the
slow manifold, the solutions of (14) converge to the solutions of the reduced
model (15), obtained by replacing x2 = 0 into the dynamics of the slow
variable.

If a1−Dγ1 ≤ 0, then, the differential equation (15) admits x∗1(D, 0+) = 0
for all D, as equilibrium, which is LAS. If a1−Dγ1 > 0, then, the differential
equation (15) admits as a positive equilibrium

x∗1(D, 0
+) :=

L1(a1 −Dγ1)

a1
. (20)

As φ(x1) > 0 for all 0 ≤ x1 < x∗1(D, 0
+) and φ(x1) < 0 for all x1 > x∗1(D, 0

+)
then, the equilibrium x∗1(D, 0

+) is LAS in the positive axis, so, the approxima-
tion given by Tikhonov’s theorem holds for all t ≥ 0 for the slow variable and
for all t ≥ t0 > 0 for the fast variable, where t0 is as small as we want. There-
fore, let z(t) be the solution of the reduced model (15) of initial condition
z(0) = x01, then, when ϵ→ 0, we have Approximations (16) and (17). ■

We have the following result which gives the conditions for which patchi-
ness is beneficial or detrimental in System (14) when ϵ goes to zero.

Theorem 2.6 Consider the total equilibrium population x∗1(D, 0
+) of System

(14) when ϵ → 0, given by (20). Then, 0 < x∗1(D, 0
+) < L1 for D < γ1

a1
, and

x∗1(D, 0
+) = 0 for D ≥ γ1

a1
.

2.4. The growth rate is much larger than the death rate In this
part, we consider the two-patch model (6) and we assume that the growth
rate a1 is much larger than the death rate a2. On can write the model in the
following way:

dx1
dt

=
a1
ϵ
x1

(
1− x1

L1

)
+D (γ2x2 − γ1x1) ,

dx2
dt

= a2x2

(
−1− x2

L2

)
+D (γ1x1 − γ2x2) ,

(21)

where ϵ is assumed to be a small positive number. We prove the following
result:
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Theorem 2.7 Let (x1(t, ϵ), x2(t, ϵ)) be the solution of System (21) with ini-
tial condition (x01, x

0
2) satisfying x0i ≥ 0 for i = 1, 2. Let z(t) be the solution

of the differential equation

dx2
dt

= a2x2

(
−1− x2

L2

)
+D(γ1L1 − γ2x2) =: ψ(x2), (22)

with initial condition z(0) = x02. Then, when ϵ→ 0, we have

x2(t, ϵ) = z(t) + oϵ(1), uniformly for t ∈ [0,+∞) (23)

and, for any t0 > 0, we have

x1(t, ϵ) = L1 + oϵ(1), uniformly for t ∈ [t0,+∞). (24)

Proof When ϵ → 0, System (21) is a slow-fast system, with one slow vari-
able, x2, and one fast variable, x1. Tikhonov’s theorem [32, 37, 38] prompts
us to consider the dynamics of the fast variables in the time scale τ = 1

ϵ t.
One obtains

dx1
dτ

= a1x1

(
1− x1

L1

)
+ ϵD(−γ1x1 + γ2x2). (25)

In the limit ϵ→ 0, we find the fast dynamics

dx1
dτ

= a1x1

(
1− x1

L1

)
. (26)

The slow manifold is given by the equilibrium of System (19), i.e. x1 = L1,
which is LAS in the positive axis. When ϵ goes to zero, Tikhonov’s theorem
ensures that after a fast transition toward the slow manifold, the solutions of
(21) converge to the solutions of the reduced model (22), obtained by replacing
x1 = L1 into the dynamics of the slow variable.
The differential equation (22) admits as a positive equilibrium

x∗2(D, 0
+) := −L2

2
− DL2

2a2
γ2 +

1

2a2

√
L2
2γ

2
2D

2 + (2a2L2
2γ2 + 4a2L2L1γ1)D + a22L

2
2.

(27)

As ψ(x2) > 0 for all 0 ≤ x2 < x∗2(D, 0
+) and ψ(x2) < 0 for all x2 >

x∗2(D, 0
+) then, the equilibrium x∗2(D, 0

+) is LAS in the positive axis, so, the
approximation given by Tikhonov’s theorem holds for all t ≥ 0 for the slow
variable and for all t ≥ t0 > 0 for the fast variable, where t0 is as small as
we want. Therefore, let z(t) be the solution of the reduced model (22) with
initial condition z(0) = x02, then, when ϵ → 0, we have Approximations (23)
and (24). ■
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As a corollary of the previous theorem, we have the following result which
give the limit of the total equilibrium population X∗

T (D, 0
+) of System (21)

when ϵ goes to zero:

Corollary 2.8 We have:

X∗
T (D, 0

+) := L1 −
L2

2
− DL2

2a2
γ2 +

1

2a2

√
L2
2γ

2
2D

2 + (2a2L2
2γ2 + 4a2L2L1γ1)D + a22L

2
2.

(28)

In the following proposition, we calculate the derivative of X∗
T (D, 0

+) at
D = 0 and the formula of perfect mixing (i.e. when D → ∞) of the total
equilibrium population defined by (28).

Proposition 2.9 Consider the total equilibrium population (28). Then,

dX∗
T

dD
(0, 0+) =

γ1L1

a2
, (29)

and
X∗

T (+∞, 0+) =
γ1 + γ2
γ2

L1. (30)

Proof The derivative of the total equilibrium population X∗
T (D, 0

+) defined
by (28) with respect to D is:

dX∗
T

dD
(D, 0+) = −L2γ2

2a2
+ 1/4

2 a2L2
2γ2 + 2DL2

2γ2
2 + 4 a2L2γ1L1

a2
√
a22L2

2 + 2 a2L2
2Dγ2 +D2L2

2γ22 + 4 a2DL2γ1L1

.

(31)

In particular, the derivative of the total equilibrium population at D = 0 is
given by the formula (29).

By taking the limit of (28) whenD → ∞, we get that the total equilibrium
population X∗

T (D, 0
+) tends to (30). ■

We have the following result which gives the conditions for which patchiness
is beneficial or detrimental in model (21) when ϵ goes to zero.

Theorem 2.10 Consider the total equilibrium population X∗
T (D, 0

+) given
by (28). Then, X∗

T (D, 0
+) ≥ L1, for all D ≥ 0.

Proof First, we try to solve the equationX∗
T (D, 0

+) = L1 with respect toD,
the solutions of this last equation give the points of intersection between the
curve of the total equilibrium population D 7→ X∗

T (D, 0
+) and the straight

line D 7→ L1. For any D ≥ 0, we have

X∗
T (D, 0

+) = L1 ⇐⇒ 1

2a2

√
L2
2γ

2
2D

2 + (2a2L2
2γ2 + 4a2L2L1γ1)D + a22L

2
2 =

L2

2
+
DL2

2a2
γ2

⇐⇒
√
L2
2γ

2
2D

2 + (2a2L2
2γ2 + 4a2L2L1γ1)D + a22L

2
2 = a2L2 + γ2DL2

⇐⇒4a2γ1L1L2D = 0

⇐⇒D = 0.



64 Effect of dispersal in single-species discrete diffusion systems

Therefore, since dX∗
T

dD (0, 0+) > 0, the curve of the total equilibrium population
intersects the straight line D 7→ L1 + L2 in a unique point which is (0, L1).
Therefore, X∗

T (D, 0
+) ≥ L1, for all D ≥ 0. ■

Biologically speaking, from Sections 2.4 and 2.3, we conclude that, the
rapid increase in the population in the source patch results in persistence in
the both patches with increased total size population, and the rapid decrease
in the sink population results in extinction in both patches.

3. Multi-patch source-sink model with intraspecific competition
in the sink patches In this section, we consider the model of n patches,
with s source patches and n− s sink patches given by:

dxi
dt

= xi(ai − αixi) +D

n∑
j=1,j ̸=i

(γijxj − γjixi), i = 1, . . . , n, (32)

where xi represent population densities of in the patch i. Without loss of
generality, the s first patches are assumed to be the source (i.e. ai > 0 for all
i = 1, . . . , s) and the other n− s patches, assumed to bet the sink (i.e. ai < 0
for all i = s + 1, . . . , n). The parameter αi is positive for all i and represent
the intraspecific competition for the i−th patch. The parameter D represents
the dispersion rate of the population, γij ≥ 0 denote the flux between patches
j and i for i ̸= j. If γij = 0 then there is non direct flux from j to i and if
γij > 0 there is a flux of population from patch j to patch i. We assume that,
there exists intraspecific competition in n− s sink patches, i.e. αi > 0 for all
i = s+ 1, . . . , n. If we denote:

ai =

{
ri if i = 1, . . . , s,
−ri if i = s+ 1, . . . , n,

where ri > 0 for all i, and Ki = ri/αi for all i = 1, . . . , n, then System (32)
can be written as:

dxi
dt

= rixi

(
1− xi

Ki

)
+D

∑n
j=1,j ̸=i(γijxj − γjixi), i = 1, . . . , s,

dxi
dt

= rixi

(
− 1− xi

Ki

)
+D

∑n
j=1,j ̸=i(γijxj − γjixi), i = s+ 1, . . . , n,

(33)

where the parameters ri > 0 is the both growth rate in the case of source (i.e
i ≤ s) patches and the death rate in the case of sink (i.e. s + 1 ≤ i ≤ n),
Ki > 0 is the carrying capacity of source patches. System (33) can be written:

dxi
dt

= rixi

(
1− xi

Ki

)
+D

∑n
j=1 γijxj , i = 1, . . . , s,

dxi
dt

= rixi

(
−1− xi

Ki

)
+D

∑n
j=1 γijxj , i = s+ 1, . . . , n,

(34)
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where the term γii accounts for the flux out of patch i and takes the form (3).
We denote by Γ the matrix Γ := (γij)n×n. We call Γ the movement matrix of
System (33). Its columns sum to 0 since the diagonal elements γii are defined
by (3) in such a way that each row sums to 0 and Γ is cooperative matrix
(see Definition B.3). If Γ is irreducible, then 0 is a simple eigenvalue of Γ
(see [8] or Lemma 4.1 and Lemma 1 of Elbetch et al. [14, 15]), and all non-
zero eigenvalues of Γ have negative real parts, i.e., the stability modulus of
a matrix Γ equals to zero. Moreover, the kernel of the matrix Γ is generated
by a positive vector (see Lemma 2 in [4]). In all of this paper, we denote by
δ := (δ1, . . . , δn)

T this positive vector. Note that, if the matrix Γ is symmetric,
then ker Γ is generated by δ = (1, . . . , 1)T . The matrix

Γ0 := Γ− diag(γ11, . . . , γnn) (35)

which is the same as the matrix Γ, except that the diagonal elements are 0,
is called the connectivity matrix. It is the adjacency matrix of the weighted
directed graph G, which has exactly n vertices (the patches), and there is an
arrow from patch j to patch i precisely when γij > 0, with weight γij assigned
to the arrow.

Remark 3.1 For the existence , uniqueness, and positivity of δ see Lemma
1 of Cosner et al. [8], Lemma 4.1 and Lemma 1 of Elbetch et al. [14, 15].
On the other hand, it is shown in Guo et al. [23, Lemma 2.1] and Gao and
Dong [21, Lemma 3.1] that the vector (Γ∗

11, . . . ,Γ
∗
nn)

T is a right eigenvector
of Γ associated with the zero eigenvalue, where, Γ∗

ii is the cofactor of the
i-th diagonal entry of Γ, and sgn(Γ∗

ii) = (−1)n−1. For two patches we have
δ = (γ12, γ21)

T , and for three patches we have δ = (δ1, δ2, δ3)
T , where

δ1 = γ12γ13 + γ12γ23 + γ32γ13,
δ2 = γ21γ13 + γ21γ23 + γ31γ23,
δ3 = γ21γ32 + γ31γ12 + γ31γ32.

(36)

In Lemma 2.1 Guo et al. [23] gives explicit formulas of the components of the
vector δ, with respect of the coefficients of Γ as follow:

δk =
∑
T∈Tk

∏
(i,j)∈E(T )

γij , k = 1, . . . , n, (37)

where Tk is the set of all directed trees of n vertices rooted at the k−th vertex,
and E(T ) denotes the set of arcs in a directed tree T .

System (33) can be also rewritten in matrix form as follow:
Ẋs = diag

(
r1 − r1

K1
x1, · · · , rs − rs

Ks
xs
)
Xs +D

(
ΓssXs + ΓspXp

)
,

Ẋp = diag
(
− rs+1 − rs+1

Ks+1
xs+1, · · · ,−rn − rn

Kn
xn
)
Xp

+D
(
ΓpsXs + ΓppXp

)
,

(38)
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whereXs = (x1, . . . , xs)
T , Xp = (xs+1, . . . , xp)

T and the matrices Γss,Γpp,Γsp,Γps

describe the flux within and between source and sink patches. They are ob-
tained by writing the matrix Γ in block form as

Γ =

[
Γss Γsp

Γps Γpp

]
. (39)

Model (33) is studied in [39] for two patches, i.e n = 2 and s = 1.

3.1. Global dynamics In this part, our goal is to study the dynamics
of System (33). Note that, in the absence of migration, i.e. the case where
D = 0, System (33) admits (K1, . . . ,Ks, 0, . . . , 0) as a non trivial equilibrium
point, which furthermore is GAS, and the origin as trivial equilibrium which
is unstable. The problem is whether or not, the equilibrium continues to exist
and to be GAS for any D > 0. The Jacobian matrix of System (33) evaluated
at x = 0 is given by:

Js(0) = diag(r1, . . . , rs,−rs+1, . . . ,−rn) +DΓ, (40)

which is the same as the matrix obtained by Arino et al. [4, Equation 7] for
System (2). The matrix Js(0) is cooperative. We have the following result
which was proven also by Arino et al. [4]:

Lemma 3.1 Consider the matrix Js(0). Then, if s = 0, S(J0(0)) < 0, and if
s = n, S(Jn(0)) > 0, where S denote the stability modulus defined by (111).

Proof If s = 0, then the matrix J0(0) becomes

J0(0) = diag(−r1, . . . ,−rn) +DΓ. (41)

Let u = (1, · · · , 1)T . We have

J0(0)Tu = (−r1, · · · ,−rn)T ≤ λu, where λ = max{−r1, · · · ,−rn} < 0.

Therefore, since J0(0) is a cooperative matrix, according to Lemma B.6, we
have

S(J0(0)) = S(J0(0)T ) ≤ λ < 0.

If s = n, then the matrix Jn(0) becomes

Jn(0) = diag(r1, . . . , rn) +DΓ. (42)

Let u = (1, · · · , 1)T . We have

Jn(0)Tu = (r1, · · · , rn)T ≥ λu, where λ = min{r1, · · · , rn} > 0.

Therefore, since Jn(0) is a cooperative matrix, according to Lemma B.6, we
have

S(Jn(0)) = S(Jn(0)T ) ≥ λ > 0.

This completes the proof of the lemma. ■
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We have also the following result:

Lemma 3.2 The stability modulus of the matrix Js(0) is a non-decreasing
function of s. Moreover, if the matrix of movement Γ is irreducible, then
Js(0) is an increasing function of s.

Proof See proof of Proposition 6 in [4]. ■

The dynamics of System (33) in the case where Γ is reducible, is given as
follows:

Theorem 3.3 Consider System (33). Assume that Γ is reducible. Then, there
exists a unique interval I ⊂]0, n[⊂ R, such that:

• If s < min I, then the origin is locally asymptotically stable (LAS), and
• if s > max I, then the origin is unstable.

Proof We have S(J0(0)) < 0 and S(Jn(0)) > 0 by Lemma 3.1. Moreover,
the function s 7→ S(Js(0)) is non-decreasing by Lemma 3.2 and continues
with respect to s (see [27, Theorem 2.4.9.2]). So by the intermediate value
theorem, there exists an interval I, possibly reduced to a single point, such
that S(Js(0)) = 0 for all s ∈ I. Criteria for local asymptotic stability and
instability of equilibria completes proof of the theorem. ■

Our goal in the remainder of this section is to study the dynamics of
System (33) in the case when the matrix Γ is irreducible. First, it is clear
that the solutions of (33) exist for all t ≥ 0 and remain non negative for non
negative initial conditions. Thus, the positive cone Rn

+ is invariant under the
flow of System (33). To establish the boundedness of solutions, we have the
following result:

Proposition 3.4 For any non negative initial condition, the solutions of
System (33) remain non negative and bounded. Moreover, the set

Λ =

{
(x1, . . . , xn) ∈ Rn : 0 ≤

n∑
i=1

xi ≤
ξ∗2
ξ∗1

}
(43)

is positively invariant and is a global attractor for (33), where ξ∗1 = min1≤i≤n ri
and ξ∗2 =

∑s
s=1 riKi.

Proof To show that all solutions are bounded, we consider the quantity
defined by XT (t) =

∑n
i=1 xi(t). So, we have

ẊT (t) =
s∑

i=1

rixi(t)

(
1− xi(t)

Ki

)
+

n∑
i=s+1

rixi(t)

(
−1− xi(t)

Ki

)
. (44)
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For all ri,Ki ∈ R∗
+, we have the following inequality:

rixi

(
1− xi

Ki

)
≤ ri(Ki − xi), i = 1, . . . , s,

rixi

(
−1− xi

Ki

)
≤ −rixi, i = s+ 1, . . . , n.

(45)

Substituting (45) into (44), we get

ẊT (t) ≤ −ξ∗1XT (t) + ξ∗2 ∀t ≥ 0,

which gives

XT (t) ≤
(
XT (0)−

ξ∗2
ξ∗1

)
e−ξ∗1 t +

ξ∗2
ξ∗1
, for all t ≥ 0. (46)

Hence,

XT (t) ≤ max

(
XT (0),

ξ∗2
ξ∗1

)
, for all t ≥ 0.

Therefore, the solutions of System (33) are positively bounded and defined
for all t ≥ 0. From (46) it can be deduced that the set Λ is positively invariant
and it is a global attractor for System (33). ■

We have the result:

Theorem 3.5 Consider System (33). Assume that the matrix Γ (or equiva-
lently, the connectivity matrix Γ0) is irreducible, then, there exists a unique
point I∗ ∈]0, n[, such that:

• If s < I∗, then the origin is GAS, and
• if s > I∗, then the model has a unique equilibrium point E∗(D), which

is GAS in the interior of the positive cone Rn \ {0}.

Proof If the matrix Γ is irreducible, then the interval I is reduced to a
single point I∗, such that: if s < I∗, then S(Js(0)) < 0, and if s > I∗, then
S(Js(0)) > 0. According to [33, Theorem 1], if S(Js(0)) < 0, the origin is
GAS. If S(Js(0)) > 0, then, System (33) is persistent for any D > 0, that
is, any solution x(t) satisfies lim inft→∞ xi(t) > 0, for all i, and furthermore,
since all the solutions to (33) are bounded, there exists a positive equilibrium
point. We denote by (x∗1(D), . . . , x∗n(D)) an equilibrium of (33). Now, define
the map:

Υi :]0,+∞[→ R, Υi(ξ) = Ψi(ξE
∗(D)),

where Ψ = (Ψ1, . . . ,Ψn) denotes the vector field associated to (33). We have,

Υi(ξ) =
ri
Ki

(x∗i (D))2 ξ(1− ξ), i = 1, . . . , n.

Therefore, according to Theorem B.9, we conclude the proof of theorem. ■
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As a corollary of the previous theorem we obtain the following result which
proven in [14, Theorem 6.1]:

Corollary 3.6 If s = n, System (33) has a unique equilibrium point in the
interior of the positive cone, which is GAS.

1

2 3

1

2 3

G1 G2

1

2 3

1

2 3

1

2 3

G3 G4 G5

Figure 3: The assumption that the matrix Γ is irreducible, implies that the
species can reach any i-th patch from any j-patch. For one-source, one-sink
patch model, the matrix Γ is irreducible if and only if γ12 and γ21 are positives.
For three-patch model, under the irreducibility hypothesis on the matrix Γ,
there are five possible cases, modulo permutation of the three patches. The
two graphs G1 and G2 for which the migration matrix may be symmetric,
if γij = γji. For the remaining cases, the graphs G3,G4 and G5, cannot be
symmetrical.

In all of this work, we denote E∗(D) the unique equilibrium in the in-
terior of the positive cone of System (33) if it exists, and X∗

T (D), the total
equilibrium population:

X∗
T (D) =

n∑
i=1

x∗i (D), E∗(D) = (x∗1(D), . . . , x∗n(D)). (47)

3.2. The behavior of the model for large migration rate
In this section, our aim is to study the behavior of System (33) for large

migration rate, i.e. when D → ∞. We use the theory of singular perturbations
and Tikhonov’s theorem [32, 37, 38] to obtain a better understanding of the
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behavior of the system in the case of perfect mixing. We have the following
result:

Theorem 3.7 Let (x1(t,D), . . . , xn(t,D)) be the solution of System (33) with
initial condition (x01, · · · , x0n) satisfying x0i ≥ 0 for i = 1 · · ·n. Let Y (t) be the
solution of the equation

dX

dt
= rX

(
1− X

(
∑n

i=1 δi)K

)
, (48)

where (δ1, ..., δn)
T the vector which generate the vector space ker Γ, αi = ri/Ki

and

r =

∑s
i=1 δiri −

∑n
i=s+1 δiri∑n

i=1 δi
, K =

∑s
i=1 δiri −

∑n
i=s+1 δiri∑n

i=1 δ
2
i αi

. (49)

Then, when D → ∞, we have

n∑
i=1

xi(t,D) = Y (t) + oD(1) uniformly for t ∈ [0,+∞) (50)

and, for any t0 > 0, we have

xi(t,D) =
δi∑n
i=1 δi

Y (t)+oD(1) i = 1, . . . , n, uniformly for t ∈ [t0,+∞).

(51)

Proof Let X(t,D) =
∑n

i=1 xi(t,D). We rewrite System (33) using the vari-
ables (X,x1, · · · , xn−1), and get:

dX

dt
=

s∑
i=1

rixi

(
1− xi

Ki

)
−

n∑
i=s+1

rixi

(
1 +

xi
Ki

)
,

dxi
dt

= rixi

(
1− xi

Ki

)
+D

∑n
j=1,j ̸=i(γijxj − γjixi), i = 1, . . . , s,

dxi
dt

= rixi

(
−1− xi

Ki

)
+D

∑n
j=1,j ̸=i(γijxj − γjixi), i = s+ 1, . . . , n− 1.

(52)
This system is actually a system in the variables (X,x1, · · · , xn−1), since,
whenever xn appears in the right hand side of (52), it should be replaced by

xn = X −
n−1∑
i=1

xi. (53)

When D → ∞, (52) is a slow-fast system, with one slow variable, X, and
n−1 fast variables, xi for i = 1 . . . n−1. As suggested by Tikhonov’s theorem
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[32, 37, 38], we consider the dynamics of the fast variables in the time scale
τ = Dt. We get

dxi
dτ

=
1

D
rixi

(
1− xi

Ki

)
+
∑n

j=1,j ̸=i(γijxj − γjixi), i = 1, . . . , s,

dxi
dτ

=
1

D
rixi

(
−1− xi

Ki

)
+
∑n

j=1,j ̸=i(γijxj − γjixi), i = s+ 1, . . . , n− 1.

(54)
where xn is given by (53). In the limit D → ∞, we find the fast dynamics

dxi
dτ

=

n∑
j=1,j ̸=i

(γijxj − γjixi), i = 1, · · · , n− 1.

This is an (n − 1)-dimensional linear differential system. According to [15,
Lemma B.1], this system admits unique LAS equilibrium given by(

δ1∑n
i=1 δi

X, . . . ,
δn−1∑n
i=1 δi

X

)T

.

Thus, the slow manifold of System (52) is given by

xi =
δi∑n
i=1 δi

X, i = 1, . . . , n− 1. (55)

As this manifold is LAS, Tikhonov’s theorem ensures that after a fast transi-
tion toward the slow manifold, the solutions of (52) are approximated by the
solutions of the reduced model, which is obtained by replacing (55) into the
dynamics of the slow variable, that is:

dX

dt
=

s∑
i=1

ri
X∑n
i=1 δi

δi

(
1− X

(
∑n

i=1 δi)Ki
δi

)
+

n∑
i=s+1

ri
X∑n
i=1 δi

δi

(
−1− X

(
∑n

i=1 δi)Ki
δi

)
= rX

(
1− X

(
∑n

i=1 δi)K

)
,

where r and K are defined in (49). Therefore, the reduced model is (48). If∑s
i=1 δiri >

∑n
i=s+1 δiri, (48) admits

X∗ =

(
n∑

i=1

δi

)
K =

(
n∑

i=1

δi

)∑s
i=1 δiri −

∑n
i=s+1 δiri∑n

i=1 δ
2
i αi

as a positive equilibrium point, which is LAS in the positive axis, and if∑s
i=1 δiri ≤

∑n
i=s+1 δiri, (48) admits the origin as unique equilibrium point,

which is LAS. The approximation given by Tikhonov’s theorem holds for all
t ≥ 0 for the slow variable and for all t ≥ t0 > 0 for the fast variables,
where t0 is as small as we want. Therefore, letting Y (t) be the solution of the
reduced model (48) with initial condition Y (0) = X(0, D) =

∑n
i=1 x

0
i , then,

then D → ∞, we have Approximations (50) and (51). ■
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Note that, in the case of perfect mixing, Approximation (50) shows that:

• If
∑s

i=1 δiri >
∑n

i=s+1 δiri, then the total population behaves like the
unique logistic equation (48) and then, when t and D tend to ∞, the
total population

∑
xi(t,D) tends toward(

n∑
i=1

δi

)
K =

(
n∑

i=1

δi

)∑s
i=1 δiri −

∑n
i=s+1 δiri∑

δ2i αi
.

• If
∑s

i=1 δiri ≤
∑n

i=s+1 δiri, then Equation (48) has the origin as unique
equilibrium, and then, when t and D tend to ∞, the total population∑
xi(t,D) tends toward 0.

Approximation (51) shows that, with the exception of a thin initial boundary
layer, where the density population xi(t,D) quickly jumps from its initial
condition x0i to the average δiX0/

∑n
i=1 δi, each patch of the n−patch source-

sink model behaves like the following equation:

du

dt
=


ru

(
1− u

δiK

)
if

∑s
i=1 δiri >

∑n
i=s+1 δiri,

r̃u

(
−1− u

δiK̃

)
otherwise,

where r̃ = −r, K̃ = −K, r and K are given in (49).
Hence, when t and D tend to ∞, the density population xi(t,D) tends

toward K = δi

∑s
i=1 δiri−

∑n
i=s+1 δiri∑

δ2i αi
if
∑s

i=1 δiri >
∑n

i=s+1 δiri, and xi(t,D)

tends toward 0 if
∑s

i=1 δiri ≤
∑n

i=s+1 δiri.
According to the previous theorem, we obtain the limit E∗(∞) of E∗(D)

when D → ∞:

Corollary 3.8 We have:

lim
D→+∞

E∗(D) =


∑s

i=1 δiri −
∑n

i=s+1 δiri∑n
i=1 δ

2
i αi

(δ1, . . . , δn), if
∑s

i=1 δiri >
∑n

i=s+1 δiri,

0 otherwise,
(56)

where αi = ri/Ki and (δ1, . . . , δn) the vector which generate the kernel of Γ.
Moreover, if the matrix Γ is symmetric, then:

lim
D→+∞

E∗(D) =


∑s

i=1 ri −
∑n

i=s+1 ri∑n
i=1 αi

(1, . . . , 1), if
∑s

i=1 ri >
∑n

i=s+1 ri,

0 otherwise.
(57)

As a second corollary of the previous theorem we obtain the following
result which describes the total equilibrium population for perfect mixing:
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Corollary 3.9 We have

X∗
T (+∞) =


∑n

i=1 δi

∑s
i=1 δiri −

∑n
i=s+1 δiri∑n

i=1 δ
2
i αi

if
∑s

i=1 δiri >
∑n

i=s+1 δiri,

0, otherwise.
(58)

Moreover, if the matrix Γ is symmetric, then:

X∗
T (+∞) =

 n

∑s
i=1 ri −

∑n
i=s+1 ri∑n

i=1 αi
, if

∑s
i=1 ri >

∑n
i=s+1 ri,

0, otherwise.

(59)

Proof The sum of the n components of the point E∗(∞) immediately gives
Formula (58). ■

In the case n = 2 and s = 1, one has δ1 = γ12 and δ2 = γ21. Therefore
(58) becomes

X∗
T (+∞) =

 (γ12 + γ21)
γ12r1 − γ21r2
γ212α1 + γ221α2

if γ21/γ12 < r1/r2,

0 otherwise.

which is the formula given by Wu et al. [39, Equation 5.8]. In the case
n = s = 2, Formula (58) becomes

X∗
T (+∞) = (γ12 + γ21)

γ12r1 + γ21r2
γ212α1 + γ221α2

,

which is the formula given by Arditi et al. [2, Equation 7] and by Poggiale et
al. [35, page 362].

In the case of the multi-patch logistic model with asymmetric migration,
i.e. the model (33) with s = n, Formula (58) becomes

X∗
T (+∞) =

(
n∑

i=1

δi

) ∑n
i=1 δiri∑n
i=1 δ

2
i αi

,

which is the formula given by Elbetch et al. [15, Equation 13].
As a corollary of the previous theorem we obtain the following result which

describes the behavior of System (33) for perfect mixing and symmetrical
dispersal:

Corollary 3.10 Assume that the matrix Γ is symmetric. Let (x1(t,D), . . . , xn(t,D))
be the solution of System (33) with initial condition (x01, · · · , x0n) satisfying
x0i ≥ 0 for i = 1 · · ·n. Let Y (t) be the solution of the equation

dX

dt
= rX

(
1− X

nK

)
, (60)
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where

r =

∑s
i=1 ri −

∑n
i=s+1 ri

n
, K =

∑s
i=1 ri −

∑n
i=s+1 ri∑n

i=1 αi
and αi = ri/Ki.

Then, when D → ∞, we have

n∑
i=1

xi(t,D) = Y (t) + oD(1) uniformly for t ∈ [0,+∞)

and, for any t0 > 0, we have

xi(t,D) =
Y (t)

n
+ oD(1) i = 1, . . . , n, uniformly for t ∈ [t0,+∞).

Proof If Γ is symmetric, one has δi = 1 for all i. Therefore, Formulas (48),
(49), and Approximations (50), (51) for δi = 1, give the proof of the corollary.■

3.3. Total population size In this section, Our aim is to compare the
total equilibrium population with the sum of carrying capacities K1+. . .+Ks,
when the migration rate D varies from zero to infinity. First, we start with
the following case.

3.3.1. Homogeneous source-sink system Let we consider a source-
sink patch model (33) when the patches have a homogeneous structure in the
sense that the growth rates and death rates are independent of the patch.
In the next proposition, we show that, if the growth rates in source patches,
and the death rates in the sink patches, are equal, then the total equilibrium
population is smaller than the sum of carrying capacities. Moreover, under
some conditions, we can have a persistence or extinction in all the patches.
Mathematically speaking, we have the result:

Proposition 3.11 Consider System (33). If r1 = . . . = rn, then X∗
T (D) ≤∑s

i=1Ki for all D ≥ 0, and dX∗
T

dD (0) = 0. Moreover,

• If
∑s

i=1 δiri ≤
∑n

i=s+1 δiri, then there is D∗ > 0 such that, X∗
T (D) > 0

for D < D∗, and X∗
T (D) = 0, for D ≥ D∗.

• If
∑s

i=1 δiri >
∑n

i=s+1 δiri, then X∗
T (D) > 0 for all D ≥ 0.

Proof If the equilibrium E∗(D) exist, then it is a solution of the algebraic
system:

0 = rixi

(
1− xi

Ki

)
+D

∑n
j=1,j ̸=i(γijxj − γjixi), i = 1, . . . , s,

0 = rixi

(
−1− xi

Ki

)
+D

∑n
j=1,j ̸=i(γijxj − γjixi), i = s+ 1, . . . , n.
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The sum of these equations shows that E∗(D) satisfies the following equation

s∑
i=1

rixi

(
1− xi

Ki

)
−

n∑
i=s+1

rixi

(
1 +

xi
Ki

)
= 0.

Therefore E∗(D) belongs to the ellipsoid:

En−1
s :=

{
x ∈ Rn : Θ(x) :=

s∑
i=1

rixi

(
1− xi

Ki

)
−

n∑
i=s+1

rixi

(
1 +

xi
Ki

)
= 0

}
.

(61)
Note that, this ellipsoid is independent of the migration terms D and γij . It
depends on the number of the sources and sinks. The ellipsoid En−1

s passes
through the points O, (K1, . . . ,Ks, 0, . . . , 0) and (0, . . . , 0,−Ks+1, . . . ,−Kn).

The equation of the tangent space to the ellipsoid En−1
s , defined by (61),

at point As = (K1, . . . ,Ks, 0, . . . , 0) is given by

s∑
i=1

(xi −Ki)
∂Θ

∂xi
(As) +

n∑
i=s+1

xi
∂Θ

∂xi
(As) = 0, (62)

where Θ is given by Equation (61). Since ∂Θ
∂xi

(As) = −ri for all i = 1, . . . , n,
Equation (62) can be written as follows:

n∑
i=1

rixi =
s∑

i=1

riKi. (63)

If we take r1 = . . . = rn, in Equation (63), we get that the equation of the
tangent plane to En−1

s at the point As is

n∑
i=1

xi =
s∑

i=1

Ki.

By the convexity of ellipsoid En−1
s , any point of En−1

s lies in the half-space
defined by the inequality

∑n
i=1 xi ≤

∑s
i=1Ki. Therefore E∗(D) satisfies

n∑
i=1

x∗i (D) ≤
s∑

i=1

Ki for all D ≥ 0.

Now, according to the formula of perfect mixing (58), we can see immediately
that X∗

T (+∞) = 0 if and only if
∑s

i=1 δiri =
∑n

i=s+1 δiri.
If r1 = . . . = rn =: r, then the formula of the derivative (108) at D = 0

becomes

dX∗
T

dD
(0) =

1

r
(1, . . . , 1) Γ (K1, . . . ,Ks, 0, . . . , 0)

T = 0.

This completes the proof of the proposition. ■
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In the case when s = n, the previous proposition becomes: if r1 = . . . = rs,
then 0 < X∗

T (D) ≤
∑

iKi, which is [14, Prop. 3.1 and Prop. 6.2].

3.3.2. Heterogeneous source-sink system In the next proposition
we give sufficient and necessary conditions for the total equilibrium population
not to depend on the migration rate. More precisely, we show that, the only
situation where the total equilibrium population is independent with respect
to dispersal, is when all the patches are sources and the vector of the carrying
capacities lies in the vector space ker Γ. That is, if there is at least one sink
patch, or we have n sources and the vector of the carrying capacities does
not belong to the vector space ker Γ, then the total equilibrium population
depends on the dispersion.

Proposition 3.12 The equilibrium E∗(D) does not depend on D if and only
if, s = n and (K1, . . . ,Kn) ∈ ker Γ. In this case E∗(D) = (K1, . . . ,Kn) for
all D > 0.

Proof The equilibrium E∗(D) := (X∗
s (D);X∗

p (D)), where
X∗

s (D) = (x∗1(D), . . . , x∗s(D)) and X∗
p (D) = (x∗s+1(D), . . . , x∗n(D)), is the

unique positive solution of the system (38), i.e:
0 = diag

(
r1 − r1

K1
x∗1(D), · · · , rs − rs

Ks
x∗s(D)

)
X∗

s (D)

+D
(
ΓssX

∗
s (D) + ΓspX

∗
p (D)

)
,

0 = diag
(
−rs+1 − rs+1

Ks+1
x∗s+1(D), · · · ,−rn − rn

Kn
x∗n(D)

)
X∗

p (D)

+D
(
ΓpsX

∗
s (D) + ΓppX

∗
p (D)

)
.

(64)

Suppose that the equilibrium E∗(D) does not depend on D. The derivative
of (64) with respect to D gives:{

0 = ΓssX
∗
s (D) + ΓspX

∗
p (D)

0 = ΓpsX
∗
s (D) + ΓppX

∗
p (D)

⇔
[
Γss Γsp

Γps Γpp

] [
X∗

s

X∗
p

]
= 0 ⇔ ΓE∗(D) = 0.

(65)
Replacing Equation (65) in (64), we get E∗(D) = (K1, . . . ,Ks, 0, . . . , 0). From
Equation (65), we conclude that (K1, . . . ,Ks, 0, . . . , 0) ∈ ker Γ. Since the vec-
tor space ker Γ is generated by a positive vector, then (K1, . . . ,Ks, 0, . . . , 0) ∈
ker Γ is hold if and only if, s = n.

Now, suppose that s = n and (K1, . . . ,Kn) ∈ ker Γ, then (K1, . . . ,Kn)
satisfies Equation (64), for all D ≥ 0. So, E∗(D) = (K1, . . . ,Kn), for all
D ≥ 0, which proves that the total equilibrium population is independent of
the migration rate D. ■

It is also clear that when all the patches are sources and the vector of the
carrying capacities lies in the vector space ker Γ, we obtain the results proved
by Elbetch et al. [14, Prop. 3.2 ] and [15, Prop. 4.5 ].
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3.3.3. Two blocks of identical source and sink patches We consider
the model of source-sink patches (33) and we assume that we have one block of
identical source patches and one block of identical sink patches. We denote by
Iso = {1, . . . , s} and Isi = {s + 1, . . . , n} for the block of the source patches
and sink patches respectively such that Iso ∪ Isi = {1, . . . , n}. The source
patches being identical means that they have the same growth rate ri and
carrying capacity Ki. Therefore, we have

r1 = . . . = rs =: rso, K1 = . . . = Ks =: Kso. (66)

The same for the sink patches, we suppose that:

rs+1 = . . . = rn =: rsi, Ks+1 = . . . = Kn =: Ksi. (67)

First, we give some definitions:

Definition 3.13 Let the flux

ΓiIsi =
∑
j∈Isi

γij ,ΓjIso =
∑
i∈Iso

γij ,ΓIsoIsi =
∑

i∈Iso,j∈Isi

γij , and ΓIsiIso =
∑

i∈Iso,j∈Isi

γji.

• For i ∈ Iso,ΓiIsi is the flux from block Isi to patch i, i.e. the sum of the
migration rates γij from patches j ∈ Isi to patch i.

• For j ∈ Isi,ΓjIso is the flux from block Iso to patch j, i.e. the sum of
the migration rates γji from patches i ∈ Iso to patch j.

• ΓIsoIsi is the flux from block Isi to block Iso, i.e. the sum of the migration
rates γij from patches j ∈ Isi, to patches i ∈ Iso.

• ΓIsiIso is the flux from block Iso to block Isi, i.e. the sum of the migration
rates γji from patches i ∈ Iso, to patches j ∈ Isi.

For each patch i we denote by Ti the sum of all migration rates γji from patch
i to another patch j ̸= i (i.e. the outgoing flux of patch i) minus the sum of
the migration rates γik from patch k to patch i, where k belongs to the same
block as i. Hence, we have:

If i ∈ Iso, Ti =
∑
j∈Isi

γji +
∑

k∈Iso\{i}

(γki − γik)

If j ∈ Isi, Tj =
∑
i∈Iso

γij +
∑

k∈Isi\{j}

(γkj − γjk)

We make the following assumption on the migration rates

Γ1Isi = . . . = ΓsIsi , Γ(s+1)Iso = . . . = ΓnIso

T1 = . . . = Ts, Ts+1 = · · · = Tn
(68)
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If Conditions (68) are satisfied, then, according to [15, Lemma 4.6], for all
i ∈ Iso and j ∈ Isi one has

ΓiIsi = ΓIsoIsi/s, ΓjIso = ΓIsiIso/s, Ti = ΓIsiIso/s, Tj = ΓIsoIsi/s. (69)

where s = n− s,ΓIsoIsi and ΓIsiIso are defined in Definition 3.13.
We consider the following regions in the set of parameters ΓIsiIso and

ΓIsoIsi , denoted by Z0,Z1 and Z2 depicted in Figure 4 and defined by:

Z0 =

{
(ΓIsiIso ,ΓIsoIsi) : ΓIsoIsi ≥

rsi
rso

ΓIsiIso

}
,

Z1 =

{
(ΓIsiIso ,ΓIsoIsi) :

rsi
rso

ΓIsiIso < ΓIsoIsi <
rsiD

rsorsi +Drso
ΓIsiIso

}
,

Z2 =

{
(ΓIsiIso ,ΓIsoIsi) : ΓIsoIsi ≥

rsiD

rsorsi +Drso
ΓIsiIso

}
.

(70)

0

Z1

Z0

Z2

ΓIsoIsi =
rsi
rso

ΓIsiIso

ΓIsiIso

ΓIsoIsi

ΓIsoIsi =
Drsi

rsorsi +Drso
ΓIsiIso

Figure 4: The regions Z0,Z1 and Z2 in the set of parameters ΓIsiIso and
ΓIsoIsi .

We have the following result

Theorem 3.14 Consider the regions Z0,Z1 and Z2 depicted in Figure 4 and
defined by (70). Assume that Conditions (66),(67) and (68) are satisfied. If
(ΓIsiIso ,ΓIsoIsi) ∈ Z2, then System (33) admits the origin as unique equilib-
rium point, which is GAS, and if (ΓIsiIso ,ΓIsoIsi) ∈ Z0 ∪ Z1, System (33)
admits unique equilibrium point in the interior of the positive cone, which is
of the form

x1 = x∗1, . . . , xs = x∗so, xs+1 = x∗n, . . . , xn = x∗si
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where (x∗so, x
∗
si) is the interior equilibrium point of the 2-patch source -sink

model
dxso
dt

= srsoxso

(
1− xso

Kso

)
+D (ΓIsoIsixsi − ΓIsiIsoxso) ,

dxsi
dt

= srsixsi

(
−1− xsi

Ksi

)
+D (ΓIsiIsoxso − ΓIsoIsixsi) ,

(71)

with specific growth rates srso and death rate srsi, carrying capacities Kso for
the source patch, parameter Ksi due to the intraspecific competition in the
sink patch and migration rates ΓIsiIso from source patch to the sink patch and
ΓIsoIsi from the sink patch to the source patch.

Proof Assume that Conditions (66) and (67) are satisfied. Then, if the in-
terior equilibrium point of (33) exist, it is the unique positive solution of the
set of algebraic equations

rsoxi

(
1− xi

Kso

)
+D

n∑
k=1,k ̸=i

(γikxk − γkixi) = 0, i = 1, · · · , s,

rsixj

(
−1− xj

Ksi

)
+D

n∑
k=1,k ̸=j

(γjkxk − γkjxj) = 0, j = s+ 1, · · · , n.

(72)
We consider the following set of algebraic equations obtained from (72) by
replacing xi = xso for i = 1, . . . , s and xi = xsi for i = s+ 1, . . . , n:

rsoxso

(
1− xso

Kso

)
+D (ΓiIsixsi − Tixso) = 0, i = 1, · · · , s,

rsixn

(
−1− xsi

Ksi

)
+D (ΓjIsoxso − Tjxsi) = 0, j = s+ 1, · · · , n.

(73)
Now, using Condition (68), together with (69), we see that System (73) is
equivalent to the set of two algebraic equations:

rsoxso

(
1− xso

Kso

)
+D

(
ΓIsoIsi

s
xsi −

ΓIsiIso

s
xso

)
= 0,

rsixsi

(
−1− xsi

Ksi

)
+D

(
ΓIsiIso

s
xso −

ΓIsoIsi

s
xsi

)
= 0.

(74)

We first notice that if xso = x∗so, xsi = x∗si is a positive solution of (74) then
xi = x∗so for i = 1, . . . , s and xi = x∗si for i = s + 1, . . . , n is a positive
solution of (72). According to Proposition 2.1, if (ΓIsiIso ,ΓIsoIsi) ∈ Z2, then
System (74) has the origin as unique equilibrium point, which is GAS, and if
(ΓIsiIso ,ΓIsoIsi) ∈ Z0 ∪ Z1, System (74) has unique equilibrium point in the
interior of the positive cone. ■

As a corollary of the previous theorem:
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Corollary 3.15 Assume that Conditions (66), (67) and (68) are satisfied.
Then the total equilibrium population X∗

T (D) = sx∗so(D) + sx∗si(D) of (33)
behaves like the total equilibrium population of the 2-patch source-sink model

dyso
dt

= rsoyso

(
1− yso

sKso

)
+D (γ2ysi − γ1yso) ,

dysi
dt

= rsiysi

(
−1− ysi

sKsi

)
+D (γ1yso − γ2ysi) .

(75)

with specific growth rate rso, death rate rsi, carrying capacities sKso, param-
eter Ksi due to the intraspecific competition in the sink patch and migration
rates γ1 =

ΓIsiIso

s , γ2 =
ΓIsoIsi

s .

Proof The equilibrium point (x∗so, x∗si) is the positive solution of the follow-
ing system:

srsoxso

(
1− xso

Kso

)
+D (ΓIsoIsixsi − ΓIsiIsoxso) = 0,

srsixsi

(
−1− xsi

Ksi

)
+D (ΓIsiIsoxso − ΓIsoIsixsi) = 0.

(76)

Therefore (y∗so = sx∗so, y
∗
si = sx∗si) is the solution of the set of equations

rsoyso

(
1− yso

sKso

)
+D (γ2ysi − γ1yso) = 0,

rsiysi

(
−1− ysi

sKsi

)
+D (γ1yso − γ2ysi) = 0,

(77)

obtained from (76) by using the change of variables yso = sxso, ysi = sxsi. ■

We can describe Conditions for which, under the conditions (66), (67) and
(68), patchiness is beneficial or detrimental in System (33). We consider the
regions in the set of the parameters ΓIsoIsi and ΓIsiIso , denoted by L0, L1,L2,
L3 and L4, depicted in Fig. 5 and defined by:

If rsi ≥ rso then


L0 =

{
(ΓIsoIsi ,ΓIsiIso) :

ΓIsiIso

ΓIsoIsi

<
rsi
rso

}
L1 =

{
(ΓIsoIsi ,ΓIsiIso) :

ΓIsiIso

ΓIsoIsi

≥ rsi
rso

}

If rsi < rso then



L2 =

{
(ΓIsoIsi ,ΓIsiIso) :

ΓIsoIsi

ΓIsiIso

≤ rso
rsi

}
L3 =

{
(ΓIsoIsi ,ΓIsiIso) :

rsi
rso

<
ΓIsiIso

ΓIsoIsi

<
Ksi(rso − rsi)

rso(Kso +Ksi)

}
L4 =

{
(ΓIsoIsi ,ΓIsIIso) :

ΓIsiIso

ΓIsoIsi

≥ Ksi(rso − rsi)

rso(Kso +Ksi)

}
(78)
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Case rsi ≥ rso.
0

L1

L0

ΓIsoIsi

ΓIsiIso
ΓIsiIso

ΓIsoIsi

=
rsi
rso

Case rsi < rso.
0

L4

L3

L2

ΓIsoIsi

ΓIsiIso

ΓIsiIso

ΓIsoIsi

=
Ksi(rso − rsi)

rso(Kso +Ksi)

ΓIsiIso

ΓIsoIsi

=
rsi
rso

Figure 5: Qualitative properties of source-sink model (33) under Conditions
(66),(67) and (68). In L0 and L1 the effect is detrimental with extinction in
two patches for L0 and persistence for L1. In L4, patchiness has a beneficial
effect on total equilibrium population. In L2 and L3, the effect is beneficial
for D < D0 and detrimental for D > D0 with persistence of the population
in the region L2 and extinction in the region L3.

Proposition 3.16 Assume that Conditions (66),(67) and (68) are satisfied,
then, the total equilibrium population X∗

T (D) = sx∗so(D) + sx∗si(D) of (33)
satisfies the following properties

1. If rsi ≥ rso, let L0 and L1 be defined by (78) and depicted in Figure 5.

Denote D∗ =
ΓIsiIsorsorsi

ΓIsoIsirsi − ΓIsiIsorso
. Then we have:

• if (ΓIsoIsi ,ΓIsiIso) ∈ L0 then X∗
T (D) ≤ sKso for all D ≥ 0. More

precisely, {
0 < X∗

T (D) ≤ sKso If D < D∗,
X∗

T (D) = 0 If D ≥ D∗.
(79)

• if (ΓIsoIsi ,ΓIsiIso) ∈ L1 then 0 < X∗
T (D) ≤ sKso for D ≥ 0.

2. If rsi < rso, let L2,L3 and L4 be defined by (78) and depicted in Figure
5. Then we have:

• if (ΓIsoIsi ,ΓIsiIso) ∈ L2 then X∗
T (D) > sKso for D < D0 and
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X∗
T (D) < sKso for all D > D0. where

D0 =
(rso − rsi) (sKso + sKsi)(

ΓIsiIso (rsi − rso) +
1
sΓIsoIsiαso (sKso + sKsi)

) (
(sαso)

−1 + (sαsi)
−1
) ,

(80)
with αso = rso/Kso and αsi = rsi/Ksi. Moreover, X∗

T (D) = 0 for
all D ≥ D∗.

• if (ΓIsoIsi ,ΓIsiIso) ∈ L3 then we have{
X∗

T (D) ≥ sKso If D ≤ D∗,
0 < X∗

T (D) < sKso If D > D∗.
(81)

• if (ΓIsoIsi ,ΓIsiIso) ∈ L4, then X∗
T (D) ≥ sKso for any D ≥ 0.

Proof The result is a consequence of Theorem 2.2 and Corollary 3.15. ■

3.4. Death rates are much larger than the growth rates In this
part, we consider the multi-patch source-sink model (33) and we assume that
the death rates of the sink patches are much larger than the growth rates of
the source patches. Under this assumption, one can write the model in the
matrix form as follow: Ẋs = diag

(
r1 − r1

K1
x1, · · · , rs − rs

Ks
xs

)
Xs +D (ΓssXs + ΓspXp) ,

Ẋp =
1
ϵdiag

(
−rs+1 − rs+1

Ks+1
xs+1, · · · ,−rn − rn

Kn
xn

)
Xp +D (ΓpsXs + ΓppXp) ,

(82)
where ϵ is assumed to be a small positive number. We have the following
result:

Theorem 3.17 Let (x1(t, ϵ), . . . , xn(t, ϵ)) be the solution of System (82) with
initial condition (x01, . . . , x

0
n) satisfying x0i ≥ 0 for i = 1, . . . , n. Let u(t) =

(u1(t), . . . , us(t)) be the solution of the following differential system

Ẋs = diag

(
r1 −

r1
K1

x1, . . . , rs −
rs
Ks

xs

)
Xs +DΓss, (83)

with initial condition u(0) = (x01, . . . , x
0
s), Xs = (x1, . . . , xs)

T and Γss is the
sub matrix of Γ defined by (39). Then, when ϵ→ 0, we have

xi(t, ϵ) = ui(t) + oϵ(1), i = 1, . . . , s uniformly for t ∈ [0, T ], (84)

and
xi(t, ϵ) = oϵ(1), i = s+ 1, . . . , n, (85)

uniformly for t ∈ [t0, T ], where 0 < t0 < T are arbitrary but fixed and in-
dependent of ϵ. If the solution us(t) of the reduced problem converges to an
asymptotically stable equilibrium, then we can put T = +∞ in Approxima-
tions (84) and (85).



B. Elbetch 83

Proof When ϵ → 0, System (82) is a slow-fast system, with x1, . . . , xs are
slow variables, and xs+1, . . . , xn fast variable. Tikhonov’s theorem [32, 37, 38]
prompts us to consider the dynamics of the fast variables in the time scale
τ = 1

D t. One obtains

Ẋp = diag

(
−rs+1 −

rs+1

Ks+1
xs+1, · · · ,−rn − rn

Kn
xn

)
Xp+ϵD (ΓpsXs + ΓppXp)

(86)
In the limit ϵ→ 0, we find the fast dynamics

Ẋp = diag

(
−rs+1 −

rs+1

Ks+1
xs+1, · · · ,−rn − rn

Kn
xn

)
Xp. (87)

The slow manifold is given by the equilibrium of System (87), i.e Xp = 0,
which is LAS in the positive axis. When ϵ goes to zero, Tikhonov’s theorem
ensures that after a fast transition toward the slow manifold, the solutions of
(82) converge to the solutions of the reduced model (83), obtained by replacing
Xp = 0 into the dynamics of the slow variable. Approximations (84) and (85)
follow from Tikhonov’s Theorem. Recall that when the reduced problem (83)
has an asymptotically stable equilibrium, then these approximations hold for
all t > 0 and not only on a compact interval [0, T ]. Recall also that there is a
boundary layer for the fast variables, that is Approximations (85) hold only
for t > t0 where t0 > 0 can be arbitrarily small but fixed. ■

For the dynamics of the reduced model (83), we have the following result:

Theorem 3.18 Consider System (83). Let A be the matrix defined by

A := diag(r1, . . . , rs) +DΓss.

Assume that the matrix Γss is irreducible, then we have:

• if S(A) ≤ 0, the origin is GAS for (83), and
• if S(A) > 0, the reduced model has a GAS positive equilibrium.

Proof As the matrix Γss is irreducible, then the matrix A is also. Note that,
the matrix A is the Jacobian matrix of the reduced model (83) evaluated at
Xs = 0. According to [33, Corollary 1 ], we conclude the complete proof. ■

Remark 3.2 Under the assumption that the matrix Γss is irreducible, Ap-
proximations (84) and (85) hold for all t > 0 and not only on a compact
interval [0, T ].

Note that, we can write the reduced model (83) as follow:

dxi
dt

= rixi

(
1− xi

Ki

)
− γixi +D

s∑
j=1

γijxj , . . . i = 1, . . . , s, (88)
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where γi = D
∑n

j=s+1 γji for i = 1, . . . , s. We denote Γ̃ := (γij)1≤i,j≤s the
matrix which represent the migration between the source patches. In [20,
Theorem 2.1], Gao have considered System (88) and proved under the as-
sumptions γi > 0, (K1, . . . ,Ks) ∈ ker T̃ and Γ̃ is irreducible, that, if R0 ≤ 0,
the origin is GAS for (83), and if R0 > 0, there exist unique positive equilib-
rium which is GAS, where R0 is the basic reproduction number of the reduced
model (83) defined as:

R0 = ρ(FV −1), with F = diag(r1, . . . , rs) and V = diag(γ1, . . . , γs)−DΓ̃,

where ρ is the spectral radius.

3.5. Growth rates are much larger than the death rates In this
part, we consider the multi-patch source-sink model (33) and we assume that
the growth rates of the source patches are much larger than the death rates
of the sink patches. Under this assumption, one can write the model in the
matrix form as follow:

Ẋs =
1
ϵdiag

(
r1 − r1

K1
x1, · · · , rs − rs

Ks
xs

)
Xs

+D (ΓssXs + ΓspXp) ,

Ẋp = diag
(
−rs+1 − rs+1

Ks+1
xs+1, · · · ,−rn − rn

Kn
xn

)
Xp

+D (ΓpsXs + ΓppXp) ,

(89)

where ϵ is assumed to be a small positive number. We have the following
result:

Theorem 3.19 Let (x1(t, ϵ), . . . , xn(t, ϵ)) be the solution of System (82) with
initial condition (x01, . . . , x

0
n) satisfying x0i ≥ 0 for i = 1, . . . , n.

Let u(t) = (u1(t), . . . , up(t)) be the solution of the differential system

Ẋp = diag

(
−rs+1 −

rs+1

Ks+1
xs+1, . . . ,−rn − rn

Kn
xn

)
Xp

+D (ΓpsKs + ΓppXp) ,

(90)

with initial condition (x0s+1, . . . , x
0
n), Xp = (xs+1, . . . , xn)

T , Ks = (K1, . . . ,Ks)
T ,

Γpp and Γps are the sub matrices of Γ defined by (39). Then, when ϵ→ 0, we
have

xi(t, ϵ) = Ki + oϵ(1), i = 1, . . . , s uniformly for t ∈ [0, T ], (91)

and
xi(t, ϵ) = ui(t) + oϵ(1), i = s+ 1, . . . , n, (92)

uniformly for t ∈ [t0, T ], where 0 < t0 < T are arbitrary but fixed and in-
dependent of ϵ. If the solution up(t) of the reduced problem converges to an
asymptotically stable equilibrium, then we can put T = +∞ in Approxima-
tions (91) and (92).
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Proof The proof is the same as Theorem 3.17. ■

Our next goal is to prove the global stability of the reduced model (90)
under the hypothesis that the two matrices Γpp and Γ are irreducible. First,
we start by the following lemma:

Lemma 3.20 Assume that the matrix Γ is irreducible. The reduced model (90)
does not have the origin as equilibrium.

Proof We suppose that the origin is an equilibrium of (90), then ΓpsKs = 0,
which is equivalent to Γps = 0. So, we obtain a contradiction since Γ is
irreducible. ■

Theorem 3.21 Assume that the two matrices Γpp and Γ are irreducible. The
reduced model (90) has unique equilibrium point in the interior of the positive
cone Rn−s

+ \ {0} which is GAS.

Proof To show the global stability of the reduced model (90) in this case,
we use the result of Hirsch [25] recalled in Theorem B.10.

The Jacobian matrix of the reduced model (90) is given by

G(Xp) := −diag

(
rs+1 + 2

rs+1

Ks+1
xs+1, . . . , rn + 2

rn
Kn

xn

)
+DΓpp,

which is irreducible because Γpp is also. Moreover, if G(Xp) ≤ G(Yp) then
diag(−ri − 2αixi) ≤ diag(−ri − 2αiyi) which gives xi ≥ yi for all i, i.e Xp ≥
Yp ≥ 0. All solutions are bounded and the reduced model (90) does not admits
the origin as equilibrium by Lemma 3.20. Hence, the reduced model (90) is
globally stable according to Hirsch [25]. ■

4. Multi-patch source-sink model without intraspecific compe-
tition in the sink patches In this section, we assume that, there is no
intraspecific competition in n− s sink patches, i.e αi = 0 for all i ≥ s+ 1 in
System (33). Under this assumption, System (33) is rewritten as follows:

dxi
dt

= rixi

(
1− xi

Ki

)
+D

∑n
j=1,j ̸=i(γijxj − γjixi), i = 1, . . . , s,

dxi
dt

= −rixi +D
∑n

j=1,j ̸=i(γijxj − γjixi), i = s+ 1, . . . , n.

(93)
System (93) was studied by Arino et al. [4] for n patches connected by migra-
tion terms and also by Wu et al. [39] for two patches. The global dynamics
of (93) is given in [4, Theorem 1]. In all of this section, we denote E∗(D)
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the positive equilibrium of (93) if it exists, and X ∗
T (D), the total equilibrium

population.

4.1. The large migration rate We have the following result which is
a consequence of Theorem 3.8.

Corollary 4.1 We have:

lim
D→+∞

E∗(D) =


∑s

i=1 δiri −
∑n

i=s+1 δiri∑s
i=1 δ

2
i αi

(δ1, . . . , δn), if
∑s

i=1 δiri >
∑n

i=s+1 δiri,

0 otherwise,
(94)

where αi = ri/Ki. Moreover, if the matrix Γ is symmetric, then:

lim
D→+∞

E∗(D) =


∑s

i=1 ri −
∑n

i=s+1 ri∑s
i=1 αi

(1, . . . , 1), if
∑s

i=1 ri >
∑n

i=s+1 ri,

0 otherwise.
(95)

Proof Just replace αi = 0 for i = s+ 1, . . . , n in Theorem 3.8. ■

According to the previous corollary, we obtain the formula of the total equi-
librium population for perfect mixing:

X ∗
T (+∞) =


∑n

i=1 δi

∑s
i=1 δiri −

∑n
i=s+1 δiri∑s

i=1 δ
2
i αi

if
∑s

i=1 δiri >
∑n

i=s+1 δiri,

0 otherwise.
(96)

Moreover, if the matrix Γ is symmetric, then:

X ∗
T (+∞) =

 n

∑s
i=1 ri −

∑n
i=s+1 ri∑s

i=1 αi
, if

∑s
i=1 ri >

∑n
i=s+1 ri,

0 otherwise .
(97)

4.2. Derivative of the total equilibrium population In this section,
our aim is to calculate the derivative of the total equilibrium population of
System (93) at D = 0. First, we start by giving the following result:

Lemma 4.2 Consider System (93). The total equilibrium population X ∗
T sat-

isfies the following relation:

X ∗
T (D) =

s∑
i=1

Ki +D

 s∑
i=1

n∑
i=1,j ̸=i

γijx
∗
j (D)− γjix

∗
i (D)

αix∗
i (D)

+

n∑
i=s+1

n∑
i=1,j ̸=i

γijx
∗
j (D)− γjix

∗
i (D)

ri

 .

(98)
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Proof If System (93) has unique equilibrium E∗(D) in the interior of the
positive cone, then it satisfies the following system: 0 = rix

∗
i (D)

(
1− x∗i (D)

Ki

)
+D

∑n
j=1,j ̸=i(γijx

∗
j (D)− γjix

∗
i (D)), i = 1, . . . , s,

0 = −rix∗i (D) +D
∑n

j=1,j ̸=i(γijx
∗
j (D)− γjix

∗
i (D)), i = s+ 1, . . . , n.

(99)
Dividing the first s equations in (99) by αix

∗
i (D), and the last n−s equations

by ri, one obtain x∗i (D) = Ki +D
∑n

i=1,j ̸=i

γijx
∗
j (D)−γjix

∗
i (D)

αix∗
i (D) i = 1, . . . , s,

x∗i (D) = D
∑n

i=1,j ̸=i

γijx
∗
j (D)−γjix

∗
i (D)

ri
i = s+ 1, . . . , n.

(100)
Taking the sum of these expressions gives (98). ■

Proposition 4.3 The derivative of the total equilibrium population X ∗
T at

D = 0, is given by:

dX ∗
T

dD
(0) =

(
1

r1
, . . . ,

1

rn

)
Γ (K1, . . . ,Ks, 0, . . . , 0)

T . (101)

Proof Using matrix notation, the relation (99) is written as follow:

X ∗
T (D) =

s∑
i=1

Ki+D

(
1

α1x∗i (D)
, . . . ,

1

αsx∗s(D)
,

1

rs+1
, . . . ,

1

rn

)
Γ (x∗1(D), . . . , x∗n(D))

T
.

(102)
By differentiating Equation (102) at D = 0, we get:

dX ∗
T

dD
(0) =

(
1

α1x∗i (0)
, . . . ,

1

αsx∗s(0)
,

1

rs+1
, . . . ,

1

rn

)
Γ (x∗1(0), . . . , x

∗
n(0))

T ,

(103)
which gives (101), since x∗i (0) = Ki for all i = 1, . . . , s, and x∗i (0) = 0 for all
i = s+ 1, . . . , n. ■

4.3. Comparison between results on (33) and the results on (93)
In this part, our aim is to compare the results on (33) and the results on (93).
We focus on two results on the total equilibrium population, the formulas
of perfect mixing and the derivatives of the total equilibrium population at
D = 0. We have the following result:

Corollary 4.4 Consider Systems (33) and (93) with the total equilibrium
population X∗

T (D) and X ∗
T (D) respectively. Then,

dX∗
T

dD
(0) =

dX ∗
T

dD
(0), and X ∗

T(+∞)−X∗
T(+∞)

{
> 0, if

∑s
i=1 δiri >

∑n
i=s+1 δiri,

= 0 otherwise.
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5. Conclusion The goal of this paper was to generalize to a multi-patch
source-sink model the results obtained in [39] for a two-patch source-sink
model and also the results of [14, 15] for muti-patch logistic model i.e. n-
source 0-sink patch model. The diffusion between patches is modeled by a
cooperative matrix. When this last matrix is irreducible, the system has a
unique equilibrium, which furthermore is globally asymptotically stable (see
Subsection 3.1).

In Subsection 3.2 we considered the particular case of perfect mixing, i.e.
when the diffusion rate goes to infinity, that is, individuals may travel freely
between patches. As in [39] for two-patch model and [14, 15], we compute
the total equilibrium population in that case as a function of the number
of the source patches, and, by perturbation arguments, we proved that the
dynamics in this ideal case provides a good approximation for the case when
the diffusion rate is large.

In Subsection 3.3 we considered the total equilibrium population in the
n patches. We gave a complete solution in the case when the source and
sink patches are partitioned into two blocks of identical patches ( source
patches are identical and sink patches also). Our results mirror those of [39],
which deals with the two-patch source-sink case (see Section 2). As shown
in Proposition 3.11, diffusion could make total equilibrium population small
than the sum of carrying capacities and also the extinction in both patches.

In Subsections 3.4 and 3.5, we study the total equilibrium population of
the source-sink patch model (33) as a function of the diffusion rate in the
case where the growth (resp. death) rate is much larger than the death (resp.
growth) rate.

Some important questions remain open: Is there a way to make connec-
tions between the sources and sinks that increases the total equilibrium pop-
ulation? Mathematically speaking, are there conditions on the parameters of
the model in which:

s∑
i=1

n∑
i=1,j ̸=i

γijx
∗
j (D)− γjix

∗
i (D)

αix∗i (D)
+

n∑
i=s+1

n∑
i=1,j ̸=i

γijx
∗
j (D)− γjix

∗
i (D)

αi(Ki + x∗i (D))

is positive for all positive diffusion rate D? Anther problem, for example, for
three-patch logistic model (one-source two-sink, two-source one-sink), is it
possible to give a complete comparison between the total equilibrium popu-
lation and the sum of the carrying capacities. I think this question is difficult
and requires a lot of work and mathematical tools.

A. Derivative of the total equilibrium population of (33) First,
we start by the following result:

Lemma A.1 Consider System (33). The total equilibrium population X∗
T sat-
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isfies the following relation:

X∗
T (D) =

s∑
i=1

Ki +D

 s∑
i=1

n∑
i=1,j ̸=i

γijx
∗
j (D)− γjix

∗
i (D)

αix∗
i (D)

+

n∑
i=s+1

n∑
i=1,j ̸=i

γijx
∗
j (D)− γjix

∗
i (D)

αi(Ki + x∗
i (D))

 .

(104)

Proof If System (33) has unique equilibrium E∗(D) in the interior of the
positive cone, then it satisfies the following system:

0 = rix
∗
i (D)

(
1− x∗i (D)

Ki

)
+D

∑n
j=1,j ̸=i(γijx

∗
j (D)− γjix

∗
i (D)), i = 1, . . . , s,

0 = rix
∗
i (D)

(
−1− x∗i (D)

Ki

)
+D

∑n
j=1,j ̸=i(γijx

∗
j (D)− γjix

∗
i (D)), i = s+ 1, . . . , n.

(105)
Dividing the first s equations in (105) by αix

∗
i (D), and the last n−s equations

by αi(Ki + x∗i (D)), one obtain
x∗i (D) = Ki +D

∑n
i=1,j ̸=i

γijx
∗
j (D)− γjix

∗
i (D)

αix∗i (D)
i = 1, . . . , s,

x∗i (D) = D
∑n

i=1,j ̸=i

γijx
∗
j (D)− γjix

∗
i (D)

αi(Ki + x∗i (D))
i = s+ 1, . . . , n.

(106)
Taking the sum of these expressions gives (104). ■

Remark A.1 Using matrix notation, Relation (105) is written as follow:

X∗
T (D) =

s∑
i=1

Ki +DvT (D)Γ (x∗1(D), . . . , x∗n(D))T , (107)

where vT (D) =
(

1
α1x∗

i (D) , . . . ,
1

αsx∗
s(D) ,

1
αs+1(Ks+1+x∗

s+1(D)) , . . . ,
1

αn(Kn+x∗
n(D))

)
.

Proposition A.2 The derivative of the total equilibrium population at D =
0, is given by:

dX∗
T

dD
(0) =

(
1

r1
, . . . ,

1

rn

)
Γ (K1, . . . ,Ks, 0, . . . , 0)

T . (108)

Proof By differentiating Equation (107) at D = 0, we get:

dX∗
T

dD
(0) = vT (0)Γ (x∗1(0), . . . , x

∗
n(0))

T . (109)

which gives (108), since x∗i (0) = Ki for all i = 1, . . . , s, and x∗i (0) = 0 for all
i = s+ 1, . . . , n. ■
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For s = n, (108) becomes

dX∗
T

dD
(0) =

(
1

r1
, . . . ,

1

rn

)
Γ (K1, . . . ,Kn)

T , (110)

which is the formula [14, Equation 28]. Note that, Formula (108) shows that,
the derivative of the total equilibrium population at D = 0 is depend on
growth and death rates ri, the carrying capacities Ki for all i = 1, . . . , s, and
the sub matrices Γss,Γps of the matrix Γ. It is independents of the parameters
Ki with i = s+ 1, . . . , n, and the sub matrix Γpp,Γsp of the matrices Γ

B. Background concepts and preliminaries results In this section,
our goal is to recall some concepts and results which we need in this work.
Proofs of some results are given here and the others we refer interested readers
to references.

Definition B.1 The kernel of a matrix A is defined by kerA = {v ∈
Rn;Av = 0}.

Definition B.2 A matrix A = (aij) is called reducible, if there is a matrix
of permutation P = (pij) ( i.e pij = 0 or pij = 1) such that:

P TAP =

[
A11 A12

0 A22

]
,

where A11 and A22 are two square sub-matrices of A. We say that A is irre-
ducible if A is non-reducible.

Definition B.3 A matrix A = (aij) is called cooperative if aij ≥ 0 for all
i ̸= j.

Definition B.4 The stability modulus of a matrix A is given by

S(A) = max {Re(λ) : λ is an eigenvalue of A} , (111)

and the spectral radius of A is

ρ(A) = max{| λ |: λ is an eigenvalue of A}. (112)

We have the following result [34, Lemma 8]:

Lemma B.5 Let A be a non negative matrix. Let u ∈ Rn
+ be a non-zero vector

and λ ∈ R+ be a real number. If Au ≥ λu then ρ(A) ≥ λ. If for a strictly
positive vector u we have Au ≤ λu then ρ(A) ≤ λ.
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Proof If Au ≥ λu then, since A is non negative, Aku ≥ λku for all k.
Therefore ∥Ak∥ ≥ λk for any matricial norm. Using the Gelfand formula
ρ(A) = limk→∞ ∥Ak∥

1
k , we obtain that ρ(A) ≥ λ. The second statement is a

simple consequence of the representation (2) in [34]. ■

We have also the following result [7, Lemma 8]:

Lemma B.6 Let A be a cooperative matrix. Let u ∈ Rn and λ ∈ R. If Au ≥ λu
then S(A) ≥ λ. If for a strictly positive vector u we have Au ≤ λu then
S(A) ≤ λ.

Proof Let A be a cooperative matrix, there exists h > 0 such that A+ hI,
where I is the identity matrix, is non negative. Let u and λ be such that
Au ≥ λu. Since S(A + hI)u ≥ (λ + h)u, using Lemma B.5, we deduce that
ρ(A+hI) ≥ λ+h. According to the Perron-Frobenius Theorem [19, Theorem
3, page 66], we have

S(A+ hI) = ρ(A+ hI).

Therefore we have S(A+hI) ≥ λ+h. Using S(A+hI) = S(A)+h, we obtain
S(A) ≥ λ. By the same method, we prove the second statement. ■

Let we consider the autonomous system:

ẋ = Ψ(x), (113)

where ẋ denote the derivative of x, Ψ = (Ψ1, . . . ,Ψn) is C1 on a domain Rn
+.

Definition B.7 Consider System (113). Let x(t, x0) is a trajectory, and x0
is the initial point. The set O of Rn is said to be positively invariant if x0 ∈ O
implies that x(t, x0) ∈ O for all t ≥ 0. In other words, once a trajectory of
the system enters O, it will never leave it again.

Definition B.8 System (113) is called cooperative if the Jacobian matrix
JΨ(x) is a cooperative matrix for all x ∈ Rn

+.

To prove the global stability of the system cooperative (113), generally, the
following result is used:

Theorem B.9 [16, 36] If system (113) possesses a positive equilibrium point
x∗ satisfying

Ψi(ξx
∗)

{
> 0 for ξ ∈]0, 1[,
< 0 for ξ > 1,

(114)

then x∗ is globally stable.
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We have also the following result of Hirsch [25]:

Theorem B.10 If the cooperative system (113) has the following proprieties:

• JΨ(x) is irreducible for any x ≥ 0,
• JΨ(x) ≤ JΨ(y) for any x ≥ y ≥ 0, and
• all solutions are bounded,

then either the origin is globally stable or there exists a unique positive equi-
librium point and all the trajectories in Rn

+ \ {0} tend to it.
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Efekt rozproszenia w jednogatunkowych systemach dyfuzji
dyskretnej z populacjami wykluczanymi ekologicznie.

Bilel Elbetch

Streszczenie Rozważany jest model wielogatunkowy enklaw wykluczanych ekolo-
gicznie z i bez konkurencji wewnątrzgatunkowej w enklawach zanikających. Najpierw
badamy dynamikę modelu, gdy macierz migracji jest nieredukowalna i redukowalna.
Pokazujemy, że istnieje progowa liczba enklaw, która powoduje, że populacja po-
tencjalnie wymiera poniżej progu i jest ustablilizowana powyżej pewnego pozomu.
Następnie, korzystając z teorii perturbacji pojedynczych i twierdzenia Tichonowa,
w przypadku doskonałego mieszania, tj. gdy współczynnik dyfuzji dąży do nieskoń-
czoności, obliczamy równowagę modelu i podajemy dobre przybliżenia rozwiązań w
tym przypadku. Po drugie, określamy, w pewnych szczególnych przypadkach, wa-
runki, w których fragmentacja i istnienie enklaw może prowadzić do tego, że całko-
wita populacja w równowadze jest większa lub mniejsza niż suma populacji enklaw.
Wreszcie, badamy wpływ szybkiego wzrostu populacji źródłowej i szybkiego wymie-
rania populacji populacji zlewowej na dynamikę całkowitej populacji równowagi i na
koegzystencję gatunków

2010 Klasyfikacja tematyczna AMS (2010): Primary: 37N25; Secondary: 34D23,
34D15, 92D25..
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