Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2023 | Vol. 23, no. 3 | art. no. e177, 2023
Tytuł artykułu

Study on the anti-corrosion properties of hydrophobic cement mortar containing coral sand

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The high porosity and strong water absorption of coral sand (CS) lead to the decline of the corrosion resistance of CS cement mortar. In this study, an environmentally friendly method of preparing hydrophobic concrete with water-repellent and anti-corrosion properties using CS is proposed. CS was modified by stearic acid to reduce the excessive water absorption caused by its high porosity. The prepared modified CS (M-CS) was used to partially replace the sand in the cement mortar to fabricate hydrophobic cement mortar, the water contact angle of which was found to be 115.9°. The cumulative water absorption, compressive strength, and anti-corrosion properties of hydrophobic cement mortar were explored. The cumulative water absorption of the hydrophobic mortar was found to be 49.75% lower than that of ordinary cement mortar. The compression test results show that a 10% content of M-CS can improve the compressive strength of cement mortar. Moreover, the corrosion resistance was found to be enhanced with the increase of the M-CS content. The hydrophobic cement mortar developed in this study is expected to strengthen the corrosion resistance of cement mortar used for coastal engineering.
Wydawca

Rocznik
Strony
art. no. e177, 2023
Opis fizyczny
Bibliogr. 49 poz., fot., rys., wykr.
Twórcy
autor
  • College of Civil Engineering and Architecture, Shandong University of Science and Technology, Qingdao 266590, Shandong, China
autor
  • College of Civil Engineering and Architecture, Shandong University of Science and Technology, Qingdao 266590, Shandong, China, qwang@sdust.edu.cn
  • College of Mechanical and Architectural Engineering, Taishan University, Taian 271000, Shandong, China
  • Institude of Advanced Engineering Materials and Structures, Taishan University, Taian 271000, Shandong, China
  • College of Civil Engineering and Architecture, Shandong University of Science and Technology, Qingdao 266590, Shandong, China
  • College of Civil Engineering and Architecture, Shandong University of Science and Technology, Qingdao 266590, Shandong, China
Bibliografia
  • 1. Wang Y, Shui Z, Gao X, Huang Y, Yu R, Li X, Yang R. Utilizing coral waste and metakaolin to produce eco-friendly marine mortar: hydration, mechanical properties and durability. J Clean Prod. 2019;219:763–74.
  • 2. Zhang L, Niu D, Wen B, Fu Q, Zhang Y. Corrosion rate models of reinforcement in modified coral aggregate concrete. Constr Build Mater. 2021;288: 123099.
  • 3. Wang A, Lyu B, Zhang Z, Liu K, Xu H, Sun D. The development of coral concretes and their upgrading technologies: a critical review. Constr Build Mater. 2018;187:1004–19.
  • 4. Zhou J, He X, Zhang L. CT characteristic analysis of sea-sand concrete exposed in simulated marine environment. Constr Build Mater. 2021;268: 121170.
  • 5. Huang D, Niu D, Su L, Fu Q. Chloride diffusion behavior of coral aggregate concrete under drying-wetting cycles. Constr Build Mater. 2021;270: 121485.
  • 6. He X, Zhou J, Wang Z, Zhang L. Study on mechanics and water transport characteristics of sea-sand concrete based on the volume analysis of each solid composition. Constr Build Mater. 2020;257: 119591.
  • 7. Feng X, Zhang Y, Lu X, Xu Y, Zhang L, Zhu C, Wu T, Yang Y, Zhao X. Corrosion performance of stainless steel reinforcement in the concrete prepared with seawater and coral waste and its ecological effects. J Renew Mater. 2020;8(5):513–34.
  • 8. Lei L, Wang Q, Xu S, Wang N, Zheng X. Fabrication of supe- rhydrophobic concrete used in marine environment with anti- corrosion and stable mechanical properties. Constr Build Mater. 2020;251: 118946.
  • 9. Chindaprasirt P, Rattanasak U. Fabrication of self-cleaning fly ash/polytetrafluoroethylene material for cement mortar spray- coating. J Clean Prod. 2020;264: 121748.
  • 10. Xu S, Wang Q, Wang N. Chemical fabrication strategies for achieving bioinspired superhydrophobic surfaces with micro and nanostructures: a review. Adv Eng Mater. 2020;23(3):2001083.
  • 11. Wang Q, Wang N, Xu S. A review on applications of super- hydrophobic materials in civil engineering. Adv Eng Mater. 2021;24(6):2101238.
  • 12. Wang Q, Xu S, Wang N, Qu L. Wetting stability of flexible super- amphiphobic surfaces under stretching loading. Surf Innov. 2022. https://doi.org/10.1680/jsuin.21.00079.
  • 13. Song W, Wang Q, Qu L, Li X, Xu S. Study of water absorption and corrosion resistance of the mortar with waste marble powder. Constr Build Mater. 2022;345: 128235.
  • 14. Wang M, Wang Q, Mao J, Xu S, Shi Z. Study on water-repellent and corrosion-resistant properties of cement mortar using super- hydrophobic iron ore tailings. J Build Eng. 2022;62:105360.
  • 15. Karthick S, Park D-J, Lee YS, Saraswathy V, Lee H-S, Jang H-O, Choi H-J. Development of water-repellent cement mor- tar using silane enriched with nanomaterials. Prog Org Coat. 2018;125:48–60.
  • 16. Li X, Wang Q, Lei L, Shi Z, Zhang M. Amphiphobic concrete with good oil stain resistance and anti-corrosion properties used in marine environment. Constr Build Mater. 2021;299: 123945.
  • 17. Yang J, She W, Zuo W, Lyu K, Zhang Q. Rational application of nano-SiO2 in cement paste incorporated with silane: counterbalancing and synergistic effects. Cem Concr Compos. 2021;118:103959.
  • 18. Xiang T, Liu J, Lv Z, Wei F, Liu Q, Zhang Y, Ren H, Zhou S, Chen D. The effect of silicon-based waterproof agent on the wet- tability of superhydrophobic concrete and enhanced corrosion resistance. Constr Build Mater. 2021;313: 125482.
  • 19. Qu L, Wang Q, Xu S, Wang N, Shi Z. Chloride corrosion resist- ance of double-layer anticorrosive coating in simulated concrete pore solution. Constr Build Mater. 2021;295: 123682.
  • 20. Shi Z, Wang Q, Li X, Lei L, Qu L, Mao J, Zhang H. Utilization of super-hydrophobic steel slag in mortar to improve water repellency and corrosion resistance. J Clean Prod. 2022;341: 130783.
  • 21. Al-Kheetan MJ, Al-Tarawneh MA, Ghaffar SH, Chougan M, Jweihan YS, Rahman MM. Resistance of hydrophobic concrete with different moisture contents to advanced freeze–thaw cycles. Struct Concr. 2020. https://doi.org/10.1002/suco.202000214.
  • 22. ASTM C457-06, Standard Test Method for Microscopical Deter- mination of Parameters of the Air-Void System in Hardened Concrete.
  • 23. JC 474–2008, Water-repellent Admixture for Mortar and Concrete.
  • 24. GB/T 50081-2019, Standard for Test Method of Concrete Physical and Mechanical Properties.
  • 25. Wang H, Zhuang J, Qi H, Yu J, Guo Z, Ma Y. Laser-chemical treated superhydrophobic surface as a barrier to marine atmospheric corrosion. Surf Coat Technol. 2020;401: 126255.
  • 26. Gurav AB, Latthe SS, Vhatkar RS, Lee J-G, Kim D-Y, Park J-J, Yoon SS. Superhydrophobic surface decorated with vertical ZnO nanorods modified by stearic acid. Ceram Int. 2014;40(5):7151–60.
  • 27. Cao Z, Daly M, Clémence L, Geever LM, Major I, Higginbotham CL, Devine DM. Chemical surface modification of calcium carbonate particles with stearic acid using different treating methods. Appl Surf Sci. 2016;378:320–9.
  • 28. ScottMuzenski IF-V, Sobolev K. Hydrophobic engineered cementitious composites for highway applications. Cem Concr Compos. 2015;57:68–74.
  • 29. Qu ZY, Alam Q, Gauvin F, Dezaire T, Brouwers HJH, Wang FZ. Development of water-resisting mortar by incorporation of functionalized waste incineration ashes. J Clean Prod. 2020;249: 119341.
  • 30. Wang N, Wang Q, Xu S, Lei L. Green fabrication of mechanically stable superhydrophobic concrete with anticorrosion property. J Clean Prod. 2021;312: 127836.
  • 31. Inthapanya X, Wu S, Han Z, Zeng G, Wu M, Yang C. Adsorptive removal of anionic dye using calcined oyster shells: isotherms, kinetics, and thermodynamics. Environ Sci Pollut Res Int. 2019;26(6):5944–54.
  • 32. Xu S, Wang Q, Wang N, Qu L, Song Q. Study of corrosion property and mechanical strength of eco-friendly fabricated superhydrophobic concrete. J Clean Prod. 2021;323: 129267.
  • 33. Han W, Liu S, Zhou Z, Chang Y, Hu R, Yu H. Study on molecular structure of stearic acid and mechanism of its phase trans- form by temperature-control FTIRS. Phys Test Chem Anal (Part B: Chem Anal). 2014;50(01):11–4.
  • 34. Xu S, Wang Q, Wang N, Zheng X, Lei L. Environmentally- friendly fabrication of a recyclable oil-water separation material using copper mesh for immiscible oil/water mixtures. Colloids Surf A. 2019;583: 124010.
  • 35. Mao J, Wang Q, Qu L, Zhang H, Shi Z, Xu S, Li X. Study of mortar layer property of superhydrophobic metakaolin based cement mortar. J Build Eng. 2022;45: 103578.
  • 36. Xu S, Wang Q, Wang N, Zheng X. Fabrication of superhy- drophobic green surfaces with good self-cleaning, chemical stability and anticorrosion properties. J Mater Sci. 2019;54(19):13006–16.
  • 37. Wang N, Wang Q, Xu S, Luan J. Flexible films with wrinkled micro-nano hierarchical structures having stable superhydrophobicity under external loading. J Mater Sci. 2020;55(22):9623–37.
  • 38. Xu S, Wang Q, Wang N. Fabrication of prewetting induced super- amphiphobic meshes for on-demand oil-water separation of light or heavy oil-water mixtures. Colloids Surf A. 2020;602: 125095.
  • 39. Song Q, Wang Q, Xu S, Mao J, Li X, Zhao Y. Properties of water- repellent concrete mortar containing superhydrophobic oyster shell powder. Constr Build Mater. 2022;337: 127423.
  • 40. Kuo W-T, Wang H-Y, Shu C-Y, Su D-S. Engineering properties of controlled low-strength materials containing waste oyster shells. Constr Build Mater. 2013;46:128–33.
  • 41. Qu ZY, Yu QL. Synthesizing super-hydrophobic ground granu- lated blast furnace slag to enhance the transport property of light- weight aggregate concrete. Constr Build Mater. 2018;191:176–86.
  • 42. Li C, Jiang L. Utilization of limestone powder as an activator for early-age strength improvement of slag concrete. Constr Build Mater. 2020;253: 119257.
  • 43. Li Y, Mi T, Liu W, Dong Z, Dong B, Tang L, Xing F. Chemical and mineralogical characteristics of carbonated and uncarbonated cement pastes subjected to high temperatures. Compos B Eng. 2021;216: 108861.
  • 44. Qiao C, Suraneni P, Nathalene Wei Ying T, Choudhary A, Weiss J. Chloride binding of cement pastes with fly ash exposed to CaCl2 solutions at 5 and 23 °C. Cem Concr Compos. 2019;97:43–53.
  • 45. Ramachandran D, Uthaman S, Vishwakarma V. Studies of carbonation process in nanoparticles modified fly ash concrete. Constr Build Mater. 2020;252: 119127.
  • 46. Dias WPS. Reduction of concrete sorptivity with age through car- bonation. Cem Concr Res. 2000;30:1255–61.
  • 47. Nicos CFF, Martys S. Capillary transport in mortars and concrete. Cem Concr Res. 1997;27(5):747–60.
  • 48. Wang N, Wang Q, Xu S, Zheng X. Mechanical stability of PDMS-based micro/nanotextured flexible superhydrophobic surfaces under external loading. ACS Appl Mater Interfaces. 2019;11(51):48583–93.
  • 49. Qu L, Wang Q, Mao J, Xu S, Zhang H, Shi Z, Li X. Study of antichlorine corrosion of anion exchange resin based superhydrophobic cement mortar in chloride salt environment. Constr Build Mater. 2021;313: 125540.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-1c6f6bb7-1e51-4ebe-82a7-eb3f5dfc84fb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.