Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2020 | Vol. 68, nr 6 | 1457--1470
Tytuł artykułu

Seismic strengthening of nonductile bridge piers using low-cost glass fiber polymers

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Several recent earthquakes have indicated that the design and construction of bridges based on former seismic design provisions are susceptible to fatal collapse triggered by the failure of reinforced concrete columns. This paper incorporates an experimental investigation into the seismic response of nonductile bridge piers strengthened with low-cost glass fiber reinforced polymers (LC-GFRP). Three full-scale bridge piers were tested under lateral cyclic loading. A control bridge pier was tested in the as-built condition and the other two bridge piers were experimentally tested after strengthening them with LC-GFRP jacketing. The LC-GFRP strengthening was performed using two different configurations. The control bridge pier showed poor seismic response with the progress of significant cracks at very low drift levels. Test results indicated the efficiency of the tested strengthening configurations to improve the performance of the strengthened bridge piers including crack pattern, yield, and ultimate cyclic load capacities, ductility ratio, dissipated energy capacity, initial stiffness degradation, and fracture mode.
Wydawca

Rocznik
Strony
1457--1470
Opis fizyczny
Bibliogr. 47 poz., rys., tab.
Twórcy
autor
  • Center of Excellence in Structural Dynamics and Urban Management, Department of Civil and Environmental Engineering Technology, King Mongkut’s University of Technology North Bangkok, Bangkok, Thailand
autor
  • Center of Excellence in Earthquake Engineering and Vibration, Department of Civil Engineering, Chulalongkorn University, Thailand, ebbadat@hotmail.com
autor
  • Department of Civil and Environmental Engineering, Faculty of Engineering, Srinakharinwirot University, Thailand, panuwatj@g.swu.ac.th
autor
  • Department of Civil Engineering, COMSATS University, Wah Campus, Wah Cantt., Pakistan
autor
  • School of Environment, Resources and Development, Asian Institute of Technology, Thailand
Bibliografia
  • [1] M.J. Priestley, “Column retrofitting using fibreglass/epoxy jackets”, in 1st Annual Seismic Research Workshop. CalTrans, Sacramento, 1991, pp. 217–224.
  • [2] F. Seible, M.J.N. Priestley, G. A. Hegemier, and D. Innamorato, “Seismic retrofit of RC columns with continuous carbon fiber jackets”, J. Compos. Constr. 1(2), 52–62 (1997).
  • [3] B.A. Bolt, W.L. Horn, G.A. MacDonald, and R.F. Scott, Geological Hazards: Earthquakes-tsunamis-volcanoes-avalanches-land-slides-floods. Springer Science & Business Media, 2013.
  • [4] A.S. Nowak, “System reliability models for bridge structures”, Bull. Pol. Ac.: Tech. 52(4), 321–328 (2004).
  • [5] B. Goszczyńska, G. Świt, and W. Trąmpczyński, “Analysis of the microcracking process with the Acoustic Emission method with respect to the service life of reinforced concrete structures with the example of the RC beams”, Bull. Pol. Ac.: Tech. 63(1), 55‒63 (2015).
  • [6] P. Tirasit and K. Kawashima, “Seismic performance of square reinforced concrete columns under combined cyclic flexural and torsional loadings”, J. Earthq. Eng. 11(3), 425–452 (2007).
  • [7] K.J. Fridley and Z. Ma, Reliability-based design of seismic retrofit for bridges. Department of Transportation, 2009.
  • [8] A. Ghobarah, T.S. Aziz, and A. Biddah, “Rehabilitation of rein-forced concrete frame connections using corrugated steel jacketing”, Struct. J. 94(3), 282–294 (1997).
  • [9] C. Suesuttajit, “A survey of configuration irregularities in typical multi-story concrete buildings in Thailand”, Asian Institute of Technology, Thailand, 2007.
  • [10] K. Rodsin, T. Mehmood, K. Kolozvari, and A. Nawaz, “Seismic assessment of non-engineered reinforced concrete columns in low to moderate seismic regions”, Bull. Earthq. Eng. 18, 5941–5964 (2020).
  • [11] K. Rodsin, P. Warnitchai, and T. Awan, “Ultimate drift at gravity load collapse of non-ductile RC columns”, in 5th Civil Engineering Conference in the Asian Region and Australasian Structural Engineering Conference 2010, Sydney, Australia, 2010, p. 441.
  • [12] P. Juntanalikit, T. Jirawattanasomkul, and A. Pimanmas, “Experimental and numerical study of strengthening non-ductile RC columns with and without lap splice by Carbon fiber reinforced polymer (CFRP) jacketing”, Eng. Struct. 125, 400–418 (2016).
  • [13] A. Garbacz, L. Courard, and B. Bissonnette, “A surface engineering approach applicable to concrete repair engineering”, Bull. Pol. Ac.: Tech. 61(1), 73–84 (2013V.
  • [14] M. Suarjana, D.D. Octora, and M. Riyansyah, “Seismic Performance of RC Hollow Rectangular Bridge Piers Retrofitted by Concrete Jacketing Considering the Initial Load and Interface Slip”, J. Eng. Technol. Sci. 52(3), 343–369 (2020).
  • [15] A. Algburi, N. Sheikh, and M. Hadi, “Analysis of concrete columns with high-performance concrete jackets and polymer wraps”, Proc. Inst. Civ. Eng. Build., 1–33 (2020). doi: 10.1680/jstbu.19.00195.
  • [16] P.S. Theint, A. Ruangrassamee, and Q. Hussain, “Strengthening of shear-critical RC columns by high-strength steel-rod collars”, Eng. J. 24(3), 107–128 (2020).
  • [17] D. Zhang, N. Li, Z.-X. Li, and L. Xie, “Experimental investigation and confinement model of composite confined concrete using steel jacket and prestressed steel hoop”, Constr. Build. Mater. 256, 119399 (2020).
  • [18] X. Zhao, H. Liang, Y. Lu, and P. Zhao, “Size effect of square steel tube and sandwiched concrete jacketed circular RC columns under axial compression”, J. Constr. Steel Res. 166, 105912 (2020).
  • [19] A. Gholampour, R. Hassanli, J.E. Mills, T. Vincent, and M. Kunieda, “Experimental investigation of the performance of concrete columns strengthened with fiber reinforced concrete jacket”, Constr. Build. Mater. 194, 51–61 (2019).
  • [20] S.W.N. Razvi and M.G. Shaikh, “Effect of confinement on behavior of short concrete column”, Procedia Manuf. 20, 563–570 (2018).
  • [21] P. Nagaprasad, D.R. Sahoo, and D.C. Rai, “Seismic strengthening of RC columns using external steel cage”, Earthq. Eng. Struct. Dyn. 38(14), 1563–1586 (2009).
  • [22] S. Ochelski, P. Bogusz, and A. Kiczko, “Static axial crush performance of unfilled and foamed-filled composite tubes”, Bull. Pol. Ac.: Tech. 60(1), 31–35 (2012).
  • [23] L.C. Bank, Composites for construction: Structural design with FRP materials. John Wiley & Sons, 2006.
  • [24] Q. Hussain, A. Ruangrassamee, S. Tangtermsirikul, and P. Joyklad, “Behavior of concrete confined with epoxy bonded fiber ropes under axial load”, Constr. Build. Mater. 263, 120093 (2020).
  • [25] Q. Hussain, “A study on sprayed fiber reinforced polymer composites for strengthening of reinforced concrete members”, 2015.
  • [26] Y. Xiao and R. Ma, “Seismic retrofit of RC circular columns using prefabricated composite jacketing”, J. Struct. Eng. 123(10), 1357–1364 (1997).
  • [27] H.F. Isleem, D. Wang, and Z. Wang, “Axial stress–strain model for square concrete columns internally confined with GFRP hoops”, Mag. Concr. Res. 70(20), 1064–1079 (2018).
  • [28] O.S. AlAjarmeh, A.C. Manalo, B. Benmokrane, W. Karunasena, and P. Mendis, “Effect of spiral spacing and concrete strength on behavior of GFRP-reinforced hollow concrete columns”, J. Compos. Constr. 24(1), 4019054 (2020).
  • [29] P. Rochette and P. Labossiere, “Axial testing of rectangular column models confined with composites”, J. Compos. Constr. 4(3), 129–136 (2000).
  • [30] J.-G. Dai, Y.-L. Bai, and J.G. Teng, “Behavior and modeling of concrete confined with FRP composites of large deformability”, J. Compos. Constr. 15(6), 963–973 (2011).
  • [31] J.-G. Dai, L. Lam, and T. Ueda, “Seismic retrofit of square RC columns with polyethylene terephthalate (PET) fibre reinforced polymer composites”, Constr. Build. Mater. 27(1), 206–217 (2012).
  • [32] Q. Hussain and A. Pimanmas, “Shear strengthening of RC deep beams with openings using sprayed glass fiber reinforced polymer composites (SGFRP): part 1. Experimental study”, KSCE J. Civ. Eng. 19(7), 2121–2133 (2015).
  • [33] Q. Hussain and A. Pimanmas, “Shear strengthening of RC deep beams with sprayed fiber-reinforced polymer composites (SFRP): Part 2 Finite element analysis”, Lat. Am. J. Solids Struct. 12(7), 1266–1295 (2015).
  • [34] Q. Hussain and A. Pimanmas, “Shear strengthening of RC deep beams with sprayed fibre-reinforced polymer composites (SFRP) and anchoring systems: Part 1. Experimental study”, Eur. J. Environ. Civ. Eng. 20(1), 79–107 (2016).
  • [35] Q. Hussain, W. Rattanapitikon, and A. Pimanmas, “Axial load behavior of circular and square concrete columns confined with sprayed fiber‐reinforced polymer composites”, Polym. Compos. 37(8), 2557–2567 (2016).
  • [36] C.P. Pantelides, J. Gergely, L.D. Reaveley, and V.A. Volnyy, “Retrofit of RC bridge pier with CFRP advanced composites”, J. Struct. Eng. 125(10), 1094–1099 (1999).
  • [37] ASTM C31/C31M-12, Standard practice for making and curing concrete test specimens in the field. ASTM International, West Conshohocken, PA, USA, 2012.
  • [38] ASTM C39/C39M, Standard test method for compressive strength of cylindrical concrete specimens. ASTM International, West Conshohocken, PA, USA, 2018.
  • [39] ASTM E8, Standard test methods for tension testing of metallic materials. ASTM International, West Conshohocken, PA, USA, 2013.
  • [40] ASTM Co mmittee D-30 on Composite Materials, Standard test method for tensile properties of polymer matrix composite materials. ASTM International, West Conshohocken, PA, USA, 2008.
  • [41] P. Yoddumrong, K. Rodsin, and S. Katawaethwarag, “Experimental study on compressive behavior of low and normal strength concrete confined by low-cost glass fiber reinforced polymers (GFRP)”, in 2018 Third International Conference on Engineering Science and Innovative Technology (ESIT), 2018, pp. 1–4.
  • [42] Y. Chen, X. Chen, and J. Bu, “Nonlinear damage accumulation of concrete subjected to variable amplitude fatigue loading”, Bull. Pol. Ac.: Tech. 66(2), 157‒163 (2018).
  • [43] M.J.N. Priestley and R. Park, “Strength and ductility of concrete bridge columns under seismic loading”, Struct. J. 84(1), 61–76 (1987).
  • [44] M.J.N. Priestley, “Displacement-based seismic assessment of reinforced concrete buildings”, J. Earthq. Eng. 1(1), 157–192 (1997).
  • [45] M.N. Fardis, Seismic design, assessment and retrofitting of concrete buildings: based on EN-Eurocode 8 8. Springer Science & Business Media, 2009.
  • [46] T. Alkhrdaji and A. Nanni, “Flexural strengthening of bridge piers using FRP composites”, in Advanced Technology in Structural Engineering, 2000, pp. 1–13.
  • [47] M.J.N. Priestley, F. Seible, and G.M. Calvi, Seismic design and retrofit of bridges. John Wiley & Sons, 1996.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-1c483a85-fe2f-47ec-9d34-2a1e1455ea88
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.