Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | nr 4 | 69--75
Tytuł artykułu

Effects of pilot oil injection timing on combustion, covariance and knocking of a natural gas–diesel duel-fuel low-speed engine

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Dual-fuel engines, which are powered by natural gas while using a small amount of diesel for ignition, have become an attractive option in the marine sector due to their fuel flexibility and relatively good emission characteristics. Altering the fuel injection timing can change the combustion state of natural gas in the cylinder, which in turn affects engine stability and leads to engine knocking. In this study, the effects of different pilot oil injection timings on the combustion stability of a marine low-speed natural gas dual-fuel engine with a pre-combustion chamber are evaluated in terms of the pressure rise, covariance of Pmax and IMEP, combustion phase, and knocking. It is found that the maximum cylinder pressure and pressure rise rate increase with an advance in the pilot oil injection time. After the natural gas enters the combustion chamber, it undergoes a process of mixing with air in the combustion chamber, and earlier pilot oil injection leads to an increase in the ignition delay period and shortens the combustion duration of the engine. Moreover, it is found that earlier pilot oil injection times result in an increase in engine IMEP and Pmax cycle fluctuations, and engine knocking also undergoes an increase when the pilot oil injection time is advanced. Hence, an appropriate pilot oil injection time should be considered in the process of optimising engine performance.
Słowa kluczowe
Wydawca

Rocznik
Tom
Strony
69--75
Opis fizyczny
Bibliogr. 21 poz., rys., tab.
Twórcy
autor
  • China Shipbuilding Power Engineering Institute CO, Shanghai, cunfengwei@163.com
  • Shanghai Maritime University Merchant Marine College, Shanghai, China
  • Shanghai Maritime University Merchant Marine College, Shanghai, China
autor
  • China Shipbuilding Power Engineering Institute CO, Shanghai
autor
  • China Shipbuilding Power Engineering Institute CO, Shanghai
autor
  • China Shipbuilding Power Engineering Institute CO, Shanghai
Bibliografia
  • 1. Wang X, Geng C, Dong J, Li X, Xu T, Jin C, Liu H, Mao B. Effect of diesel/PODE/ethanol blends coupled pilot injection strategy on combustion and emissions of a heavy duty diesel engine. Fuel 335(127024) 1-10 2023. https://doi.org/10.1016/j.fuel.2022.127024.
  • 2. Geng L, Wang Y, Wang J, Wei Y, Lee C F. Numerical simulation of the influence of fuel temperature and injection parameters on biodiesel spray characteristics. Energy Science & Engineering 8(2) 312-326 2020. https://doi.org/10.1002/ese3.429.
  • 3. Wang H, Wang T, Feng Y, Lu Z, Sun K. Synergistic effect of swirl flow and prechamber jet on the combustion of a natural gas-diesel dual-fuel marine engine. Fuel 325(124935) 1-9 2022. https://doi.org/10.1016/j.fuel.2022.124935.
  • 4. Zheng J, Hao Z, Wang D, Di Y, Peng H, Wu T, Miao X. Effect of double-layer hole nozzle with narrow spray angle on combustion and emissions in dual-fuel natural gas engine. Fuel 314(123090) 1-13 2022. https://doi.org/10.1016/j. fuel.2021.123090.
  • 5. Wang S, Li Y, Fu J, Liu J, Dong H, Tong J. Quantitative investigation of the effects of EGR strategies on performance, cycle-to-cycle variations and emissions characteristics of a higher compression ratio and heavy-duty NGSI engine fueled with 99% methane content. Fuel 263(116736) 1-14 2020. https://doi.org/10.1016/j.fuel.2019.116736.
  • 6. Bommisetty H, Liu J, Kooragayala R, Dumitrescu C. Fuel composition effects in a CI engine converted to SI natural gas operation. SAE Technical Paper, 2018-01-1137, 2018. https://doi.org/10.4271/2018-01-1137.
  • 7. Xiong W, Ye J, Gong Q, Feng H, Xu J, Shen A. Multiinput model predictive speed control of lean-burn natural gas engine in range-extended electric vehicles. Energy 239(122165) 1-12 2022. https://doi.org/10.1016/j.energy.2021.122165.
  • 8. Liu J, Dumitrescu C E. Flame development analysis in a diesel optical engine converted to spark ignition natural gas operation. Applied Energy 230 1205-1217 2018. https://doi.org/10.1016/j.apenergy.2018.09.059.
  • 9. Yu H, Chen J, Duan S, Sun P, Wang W, Tian H. Effect of natural gas injection timing on performance and emission characteristics of marine low speed two-stroke natural gas/diesel dual-fuel engine at high load conditions. Fuel 314(123127) 1-9 2022. https://doi.org/10.1016/j.fuel.2021.123127.
  • 10. Li M, Wu H, Zhang T, Shen B, Zhang Q, Li Z. A comprehensive review of pilot ignited high pressure direct injection natural gas engines: factors affecting combustion, emissions and performance. Renewable and Sustainable Energy Reviews 119(109653) 1-17 2020. https://doi.org/10.1016/j.rser.2019.109653.
  • 11. Karim G A. Combustion in gas fueled compression: Ignition engines of the dual fuel type. Journal of Engineering for Gas Turbines and Power 125(3) 827-836 2003. https://doi.org/10.1115/1.1581894.
  • 12. Yousefi A, Guo H, Birouk M. Split diesel injection effect on knocking of natural gas/diesel dual-fuel engine at high load conditions. Applied Energy 279(115828) 1-14 2020. https://doi.org/10.1016/j.apenergy.2020.115828.
  • 13. Park H, Shim E, Bae C. Improvement of combustion and emissions with exhaust gas recirculation in a natural gasdiesel dual-fuel premixed charge compression ignition engine at low load operations. Fuel 235 763-774 2019. https://doi.org/10.1016/j.fuel.2018.08.045.
  • 14. Yang B, Zeng K. Effects of natural gas injection timing and split pilot oil injection strategy on the combustion performance and emissions in a dual-fuel engine fueled with diesel and natural gas. Energy Conversion and Management 168 162-169 2018. https://doi.org/10.1016/j.enconman.2018.04.091.
  • 15. Altinkurt M D, Merts M, Tuner M, Turkcan A. Effects of split diesel injection strategies on combustion, knocking, cyclic variations and emissions of a natural gas-diesel dual fuel medium speed engine. Fuel 347(128517) 1-13 2023. https://doi.org/10.1016/j.fuel.2023.128517.
  • 16. Muthuswamy S, Veerasigamani M. Comparative experimental analysis on dual fuel with biodiesel-acetylene in reactivity controlled compression ignition engine. International Journal of Ambient Energy 43(1) 6317-6328 2022. https://doi.org/10.1080/01430750.2021.2014958.
  • 17. Singh A, Anderson D, Hoffman M, Filipi Z, Prucka R. An evaluation of knock determination techniques for dieselnatural gas dual fuel engines. SAE Technical Paper, 2014-01-2695, 2014. https://doi.org/10.4271/2014-01-2695.
  • 18. Liu J, Yang F, Wang H, Ouyang M, Hao S. Effects of pilot oil quantity on the emissions characteristics of a CNG/diesel dual fuel engine with optimized pilot injection timing. Applied Energy 110 201-206 2013. http://dx.doi.org/10.1016/j.apenergy.2013.03.024.
  • 19. Liu J, Zhao W, Zhang X, Ji Q, Ma H, Sun P, Wang P. Optimizing combustion and emissions in natural gas/diesel dual-fuel engine with pilot injection strategy. Thermal Science and Engineering Progress 48(102418) 1-15 2024. https://doi.org/10.1016/j.tsep.2024.102418.
  • 20. Wang Z, Zhang F, Xia Y, Wang D, Xu Y, Du G. Combustion phase of a diesel/natural gas dual fuel engine under various pilot diesel injection timings. Fuel 289(119869) 1-10 2021. https://doi.org/10.1016/j.fuel.2020.119869.
  • 21. Duan X, Liu J, Yuan Z, Guo G, Liu Q, Tang Q, Deng B, Guan J. Experimental investigation of the effects of injection strategies on cycle-to-cycle variations of a DISI engine fueled with ethanol and gasoline blend. Energy 165 455-470 2018. https://doi.org/10.1016/j.energy.2018.09.170.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-1c2f35dd-8907-43f6-954e-68b9b9cd11b5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.