Czasopismo
Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Warianty tytułu
Automatyzacja żywienia krów mlecznych jako sposób redukcji emisji gazów cieplarnianych pochodzących z produkcji zwierzęcej
Języki publikacji
Abstrakty
The increasing number of the population and the related intensification of animal-origin food production are indicated as the source of climatic changes. The present paper contains the information concerning the impact of animal production on anthropogenic emission of greenhouse gases (GHG). A special attention was paid to the problems connected with milk production. The selected methods for mitigation of GHG emission, derived from dairy farms, were presented. The recent part of the paper was dedicated to the comparison of energy consumption in automatic (AFS) and conventional (CFS) feeding systems and the potential profits, resulting from the application of automatic feeding systems.
Rosnąca liczba ludności i związana z tym intensyfikacja produkcji żywności pochodzenia zwierzęcego wskazywane są jako źródło zmian klimatycznych. W niniejsze pracy zawarto informacje dotyczące wpływu produkcji zwierzęcej na antropogeniczną emisję gazów cieplarnianych (GHG). Szczególną uwagę poświecono kwestiom związanym z produkcją mleka. Przedstawiono także wybrane metody łagodzenia emisji GHG pochodzącej z gospodarstw mlecznych. Ostatnią część pracy poświęcono porównaniu energochłonności automatycznych (AFS) i konwencjonalnych (CFS) systemów żywienia oraz potencjalnym korzyściom wynikającym z użytkowania automatycznych systemów żywienia.
Czasopismo
Rocznik
Tom
Strony
2--9
Opis fizyczny
Bibliogr. 35 poz., rys., tab.
Twórcy
autor
- Lely East Ltd., Lisi Ogon, Pocztowa 2a, 86-065 Łochowo, ksiatka@lely.com
Bibliografia
- [1] Battini F., Tabaglio V., Amaducci S. 2016, Environmental impacts of different dairy farming systems in the Po Valley, Journal of Cleaner Production, 112, s. 91-10.
- [2] Baumann D.E., Capper J.L.. Efficiency of dairy production and its carbon footprint. https://animal.ifas.ufl.edu/apps/dairymedia/rns/2010/11-Bauman.pdf, accessible on 30.06.2021.
- [3] Bava L., Tamburini A. Penati C., Riva E., Mattachini G., Provolo G., Sandrucci A. 2012, Effects of feeding frequency and environmental conditions on dry matter intake, milk yield and behaviour of dairy cows milked in conventional or automatic milking system, Italian Journal of Animal Science, 11(e42), s. 230-235.
- [4] Bieńkowski J., Baum R., Holka M. 2021, Eco-efficiency of milk production in Poland using the life cycle assessment methodologies, European Research Studies Journal, XXIV, 1, s. 890-912.
- [5] Brizga J., Kurppa S., Heusala H. 2021, Environmental impacts of milking cows in Latvia, Sustainability, 13, 784.
- [6] Capper J.L., Cady R.A. 2020, The effetcs of improved performance in the U.S. dairy cattle industry on environmental impacts between 2007 and 2017, Journal of Animal Science, 98(1), s. 1-14.
- [7] Cutress D. 2020, Can precision farming help mitigate climate change?, Farming Connect, s. 1-8, https://pure.aber.ac.uk/portal/files/37585832/Precision_farming_technologies_and_climate_change_mitigation.pdf, accessible on 26.05.2021.
- [8] Da Borso F., Chiumenti A., Sigura M., Pezzuolo A. 2017, Influence] of automatic feeding systems on design and management of dairy farms, Journal of Agricultural Engineering, XLVIII(s1): 642, s. 48-52.
- [9] Guerci M., Bava L., Zucali M., Sandrucci A., Penati C., Tamburini A., 2013, Effect of farming strategies on environmental impact of intensive dairy farms in Italy, Journal of Dairy Research, 80, s. 300-308.
- [10] Hosseinzadeh-Bandbafa H., Safarzadfeh D., Ahmadi E., Nabavi Pelesaraei A. 2016, Modeling output energy and greenhouse gas emission of dairy farms using adaptive neural fuzzy inference system, Agricultural Communications , 4(2), s. 14-23.
- [11] Johnston C., DeVries T.J. 2018, Short communication: Associations of feeding behavior and milk production in dairy cows, Journal of Dairy Science, 101, s. 3367-3373.
- [12] Karbowy A., Koniuszy A., Sędłak P. 2012, Assessment of average exhaust emissions from a farm tractor operating in a livestock building, TEKA. Commission of motorization and energetics in agriculture, 12(1), s. 69-72.
- [13] Kilic I., Yayli B. 2020, Environmantal sustainability in livestock farms [w:] KUTER B., KESKIN N., Agricultural and natural science. Theory, current researches and new trends, ISBN: 978-9940-46- 038-9, s. 73-92.
- [14] Lely 2020, https://www.lely.com/media/lely-centers-files/brochures/published/Lely_Flyer_Energief%C3%B6rderung_web.pdf, accessible on 20.07.2021.
- [15] Lioy R., Dusseldorf T., Meier A., Reding R., Turmes S., 2014, Carbon footprint and Energy consumption of Luxemburgish dairy farms, http://ifsa.boku.ac.at/cms/fileadmin/Proceeding2014/WS_2_7_Lioy.pdf, accessible on 12.07.2021.
- [16] Mantysaari P., Khalili H., Sariola J. 2006, Effect of feeding frequency of a total mixed ration on the performance high-yielding dairy cows, Journal of dairy Science, 89, s. 4312-4320.
- [17] Mielcarek P., Rzeźnik W. 2018, Greenhouse gas emission from Polish agriculture in the years 2007–2016, Proceedings of 17th International Scientific Conference Engineering for Rural Development, Jelgava, Latvia, 23-25 May, 2018, s. 1754-1759.
- [18] Oberschatzl R., Haidn B., Neiber J., Neser S. 2015, Automatic feeding systems for cattle - A study of the energy consumption, Proceedings of XXXIX CIOSTA & CIGR V International Conference, St. Petersburg, Rosja, 26-28 Maj 2015.
- [19] Pezzulolo A., Chiumenti A., Sartori L., Da Borso F. 2016, Automatic feeding system: Evaluation of energy consumption and labour requirement in north-east Italy dairy farm, Proceedings of 15th International Scientific Conference Engineering for Rural Development, Jelgava, Latvia, 25-27 May, 2016, s. 882-887.
- [20] Piwowar A. 2019, Low-carbon agriculture in Poland: Theoretical and practical changes, Polish Journal of Environmental Studies, 28(4), s. 2785-2792.
- [21] Podkówka Z., Cermak B., Podkówka W., Broucek J. 2015, Greenhouse gas emissions from cattle, Ekologia, 34(1), s. 82-88.
- [22] Prasard R.J., Sourie S.J., Cherukuri V.R., Fita L., Merera C.E., 2015, Global warming: Genesis, facts and impacts on livestock farming and mitigation strategies. International Journal of Agriculture Innovations and Research, 3, s. 1494-1503.
- [23] Preethika D.D.P., Wadanambi R.T., Wandana L.S., Chathumini K.K.G.L., Dassanayake N.P., Udara S.P.R. 2021, Energy management contribution for greenhouse gas mitigation, Journal of Research Technology and Engineering, 2(2), s.1-13.
- [24] Rajaniemi M., Turunen M., Ahokas J. 2015, Direct Energy consumption and savings possibilities in milk production, Agronomy Research, 13(1), s. 261-268.
- [25] Rotz C.A. 2014. Impact of increasing milk production on whole farm environmental management. Proceedings of the 12th Annual Mid-Atlantic Conference, s. 39-44.
- [26] Sarkwa F.O., Timpong-Jones E.C., Assuming-Bedikao N., Aikins S., Adogla-Bessa T. 2016, The contribution of livestock production to climate change: a review, Livestock Research for Rural Development, 28, Artykuł #37.
- [27] Scott A., Blanchard R. 2021, The role of anaerobic digestion in reducing dairy farm greenhouse gas emission, Sustainability, 13, 2612.
- [28] Shine P., Breen M., Upton J., O’Donovan A., Murphy M.D. 2019, A decision support system for Energy use on dairy farms, Proceedings of the Precision Livestock Farming ’19 Conference, s.45-52.
- [29] Sniffen C.J., Chalupa W. 2015, Targeted feeding to save nutrients, Western Dairy Management Conference, Reno, NV, 03-05.03.2015.
- [30] Tangorra F.M., Calcante A. 2018, Energy consumption and technical-economic analysis of an automatic feeding system for dairy farm: Results from a field test, Journal of Agricultural Engineering, XLIX(869), s. 228-232.
- [31] Todde G., Murgia L., Caira M., Pazzona A. 2018, A comprehensive Energy analysis and related carbon footprint of dairy farms, part 1: Direct Energy requirements, Energies, 11(451), s. 1-14.
- [32] Trupa A., Aplocina E., Degola L., 2015, Forage quality and feed intake effect on methane emission from dairy farming, Proceedings of 14th International Scientific Conference Engineering for Rural Development, Jelgava, Latvia, 20-22 May, 2015, s. 601-605.
- [33] Vaculik P., Smjetkova A. 2019, Assessment of selected parameters of automatic and conventional equipment used in cattle feeding, Agronomy Research 17(3), s. 897-889.
- [34] Wisniewski P., Kistowski M. 2019, Local-level agricultural greenhouse gas emission in Poland, Fresenius Environmental Bulletin, 28(3), s. 2255-2268.
- [35] Zifei L. 2015. Carbon footprint of livestock production, https://bookstore.ksre.ksu.edu/pubs/MF3180.pdf, accessible on 30.06.2021.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-1c04c013-3aad-42c8-89d3-fb72e13c2406