Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | T. 14, nr 1 | 83--89
Tytuł artykułu

Genetic algorithm-based decision tree optimization for detection of dementia through MRI analysis

Treść / Zawartość
Warianty tytułu
PL
Optymalizacja drzewa decyzyjnego oparta na algorytmie genetycznym do wykrywania demencji poprzez analizę MRI
Języki publikacji
EN
Abstrakty
EN
Dementia is a devastating neurological disorder that affects millions of people globally, causing progressive decline in cognitive function and daily living activities. Early and precise detection of dementia is critical for optimal dementia therapy and management however, the diagnosis of dementia is often challenging due to the complexity of the disease and the wide range of symptoms that patients may exhibit. Machine learning approaches are becoming progressively more prevalent in the realm of image processing, particularly for disease prediction. These algorithms can learn to recognize distinctive characteristics and patterns that are suggestive of specific diseases by analyzing images from multiple medical imaging modalities. This paper aims to develop and optimize a decision tree algorithm for dementia detection using the OASIS dataset, which comprises a large collection of MRI images and associated clinical data. This approach involves using a genetic algorithm to optimize the decision tree model for maximum accuracy and effectiveness. The ultimate goal of the paper is to develop an effective, non-invasive diagnostic tool for early and accurate detection of dementia. The GA-based decision tree, as proposed, exhibits strong performance compared to alternative models, boasting an impressive accuracy rate of 96.67% according to experimental results.
PL
Demencja jest wyniszczającym zaburzeniem neurologicznym, które dotyka miliony ludzi na całym świecie, powodując postępujący spadek funkcji poznawczych i codziennych czynności życiowych. Wczesne i precyzyjne wykrywanie demencji ma kluczowe znaczenie dla optymalnej terapii i zarządzania demencją, jednak diagnoza demencji jest często trudna ze względu na złożoność choroby i szeroki zakres objawów, które mogą wykazywać pacjenci. Podejścia oparte na uczeniu maszynowym stają się coraz bardziej powszechne w dziedzinie przetwarzania obrazu, szczególnie w zakresie przewidywania chorób. Algorytmy te mogą nauczyć się rozpoznawać charakterystyczne cechy i wzorce, które sugerują określone choroby, analizując obrazy z wielu modalności obrazowania medycznego. Niniejszy artykuł ma na celu opracowanie i optymalizację algorytmu drzewa decyzyjnego do wykrywania demencji przy użyciu zbioru danych OASIS, który obejmuje duży zbiór obrazów MRI i powiązanych danych klinicznych. Podejście to obejmuje wykorzystanie algorytmu genetycznego do optymalizacji modelu drzewa decyzyjnego w celu uzyskania maksymalnej dokładności i skuteczności. Ostatecznym celem artykułu jest opracowanie skutecznego, nieinwazyjnego narzędzia diagnostycznego do wczesnego i dokładnego wykrywania demencji. Zaproponowane drzewo decyzyjne oparte na GA wykazuje wysoką wydajność w porównaniu z alternatywnymi modelami, szczycąc się imponującym współczynnikiem dokładności wynoszącym 96,67% zgodnie z wynikami eksperymentalnymi.
Wydawca

Rocznik
Strony
83--89
Opis fizyczny
Bibliogr. 40 poz., tab., wykr.
Twórcy
  • Velagapudi Ramakrishna Siddhartha Engineering College, Department of Computer Science and Engineering, Kanuru, Vijayawada, India, ganuradha@vrsiddhartha.ac.in
autor
  • Velagapudi Ramakrishna Siddhartha Engineering College, Department of Computer Science and Engineering, Kanuru, Vijayawada, India, davuharini@gmail.com
  • Velagapudi Ramakrishna Siddhartha Engineering College, Department of Computer Science and Engineering, Kanuru, Vijayawada, India, karrimuthyalanaidu3802@gmail.com
Bibliografia
  • [1] Abdollahi J., Nouri-Moghaddam B.: Hybrid stacked ensemble combined with genetic algorithms for diabetes prediction. Iran Journal of Computer Science 5(3), 2022, 205–220.
  • [2] Adeli H., Ghosh-Dastidar S., Dadmehr N.: Alzheimer's disease and models of computation: Imaging, classification, and neural models. Journal of Alzheimer's Disease 7(3), 2005, 187–199.
  • [3] Al-Badarneh A., Najadat H., Alraziqi A.: Brain Images Classifier: A Hybrid Approach Using Decision Trees and Genetic Algorithms. JINT 7(2), 2016.
  • [4] Aminizadeh S. et al.: The applications of machine learning techniques in medical data processing based on distributed computing and the Internet of Things. Computer methods and programs in biomedicine 241, 2023, 107745.
  • [5] Angelillo M. T. et al.: Attentional pattern classification for automatic dementia detection. IEEE Access 7, 2019, 57706–57716.
  • [6] Azad R. et al.: Medical image segmentation on MRI images with missing modalities: a review [http://arxiv.org/abs/2203.06217].
  • [7] Bansal D. et al.: Comparative analysis of various machine learning algorithms for detecting dementia. Procedia computer science 132, 2018, 1497–1502.
  • [8] Basheer S., Bhatia S., Sakri S. B.: Computational modeling of dementia
  • prediction using deep neural network: analysis on OASIS dataset. IEEE access 9, 2021, 42449–42462.
  • [9] Biswal A.: What Is Principal Component Analysis? Simplilearn.com [www.simplilearn.com/tutorials/machine-learning-tutorial/principal-component analysis] (avaible 7.11.2023).
  • [10] Bukhari S. N. H., Webber J., Mehbodniya A.: Decision tree based ensemble machine learning model for the prediction of Zika virus T-cell epitopes as potential vaccine candidates. Scientific Reports 12(1), 2022, 7810.
  • [11] Deng W. et al.: An enhanced fast non-dominated solution sorting genetic algorithm for multi-objective problems. Information Sciences 585, 2022, 441–453.
  • [12] Dhiman G. et al.: A novel machine-learning-based hybrid CNN model for tumor identification in medical image processing. Sustainability 14(3), 2022, 1447.
  • [13] Díaz-Álvarez J. et al.: Genetic algorithms for optimized diagnosis of Alzheimer’s disease and Frontotemporal dementia using Fluorodeoxyglucose positron emission tomography imaging. Frontiers in aging neuroscience 13, 2022, 983.
  • [14] Drouka A. et al.: Dietary and nutrient patterns and brain MRI biomarkers in dementia-free adults. Nutrients 14(11), 2022, 2345.
  • [15] Elhazmi A. et al.: Machine learning decision tree algorithm role for predicting mortality in critically ill adult COVID-19 patients admitted to the ICU. Journal of infection and public health 15(7), 2022, 826–834.
  • [16] Elyan E. et al.: Computer vision and machine learning for medical image analysis: recent advances, challenges, and way forward. Artificial Intelligence Surgery 2, 2022.
  • [17] Emam M. M., Houssein E. H., Ghoniem R. M.: A modified reptile search algorithm for global optimization and image segmentation: Case study brain MRI images. Computers in Biology and Medicine 152, 2023, 106404.
  • [18] Fang L., Wang X.: Brain tumor segmentation based on the dual-path network of multi-modal MRI images. Pattern Recognition 124, 2022, 108434.
  • [19] García-Gutierrez F. et al.: GA-MADRID: Design and validation of a machine learning tool for the diagnosis of Alzheimer’s disease and frontotemporal dementia using genetic algorithms. Medical & Biological Engineering & Computing 60(9), 2022, 2737–2756.
  • [20] Gorji H. T., Haddadnia J.: A novel method for early diagnosis of Alzheimer’s disease based on pseudo Zernike moment from structural MRI. Neuroscience 305, 2015, 361–371.
  • [21] Haug C. J., Drazen J. M.: Artificial intelligence and machine learning in clinical medicine. New England Journal of Medicine 388(13), 2023, 1201–1208.
  • [22] Javeed A. et al.: Machine Learning for Dementia Prediction: A Systematic Review and Future Research Directions. Journal of Medical Systems 47(1), 2023, 17.
  • [23] Leocadi M. et al.: Awareness impairment in Alzheimer’s disease and fronto temporal dementia: a systematic MRI review. Journal of Neurology 270(4), 2023, 1880–1907.
  • [24] Liang X. et al.: Evaluating voice-assistant commands for dementia detection. Computer Speech & Language 72, 2022, 101297.
  • [25] Li R. et al.: Applications of artificial intelligence to aid early detection of dementia: a scoping review on current capabilities and future directions. Journal of biomedical informatics 127, 2022, 104030.
  • [26] Liu H. et al.: NeuroCrossover: An intelligent genetic locus selection scheme for genetic algorithm using reinforcement learning. Applied Soft Computing 146, 2023, 110680.
  • [27] Miled Z. B. et al.: Feature engineering from medical notes: A case study of dementia detection. Heliyon 9(3), 2023.
  • [28] Mirheidari B. et al.: Dementia detection using automatic analysis of conversations. Computer Speech & Language 53, 2019, 65–79.
  • [29] Mirzaei G., Adeli H.: Machine learning techniques for diagnosis of Alzheimer disease, mild cognitive disorder, and other types of dementia. Biomedical Signal Processing and Control 72, 2022, 103293.
  • [30] Marcus D. S. et al.: Open access series of imaging studies: longitudinal MRI data in nondemented and demented older adults. Journal of Cognitive Neuroscience 22(12), 2010, 2677–2684.
  • [31] Nori V. S. et al.: Machine learning models to predict onset of dementia: a label learning approach. Alzheimer's & Dementia: Translational Research & Clinical Interventions 5, 2019, 918–925.
  • [32] Nowroozpoor A. et al.: Detecting cognitive impairment and dementia in the emergency department: a scoping review. Journal of the American Medical Directors Association 23(8), 2022, 1314–1315.
  • [33] Perovnik M. et al.: Automated differential diagnosis of dementia syndromes using FDG PET and machine learning. Frontiers in Aging Neuroscience 14, 2022, 1005731.
  • [34] Ramos D. et al.: Using decision tree to select forecasting algorithms in distinct electricity consumption context of an office building. Energy Reports 8, 2022, 417–422.
  • [35] Shehab M. et al.: Machine learning in medical applications: A review of state of-the-art methods. Computers in Biology and Medicine 145, 2022, 105458.
  • [36] So A. et al.: Early diagnosis of dementia from clinical data by machine learning techniques. Applied Sciences 7(7), 2017, 651.
  • [37] Squires M. et al.: A novel genetic algorithm based system for the scheduling of medical treatments. Expert Systems with Applications 195, 2022, 116464.
  • [38] Varoquaux G. Cheplygina V.: Machine learning for medical imaging: methodological failures and recommendations for the future. NPJ Digital Medicine 5(1), 2022, 48.
  • [39] World Health Organization: WHO and World Health Organization: WHO. Dementia [www.who.int/news-room/fact-sheets/detail/dementia/?gclid=CjwKCAiA-P rBhBEEiwAQEXhHzn09E8kOoRAOoS8xNltu1svCep3MzGBPB363AJ20n3X F3v9M9C9axoCS7QQAvD_BwE] (avaible 15.03.2023).
  • [40] Zhao X. et al.: A voice recognition-based digital cognitive screener for dementia detection in the community: Development and validation study. Frontiers in Psychiatry 13, 2022, 899729.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-1b9a69ad-1a3f-471f-90a9-a5d0237a47f5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.