Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | no. 62 | 68--75
Tytuł artykułu

Evaluation of green residues management of selected grape varieties

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents the possibilities of energy management of residues from the cultivation of grapes of the ‘Regent’, ‘Rondo’ and ‘Seyval Blanc’ cultivars. The research was conducted in southeastern Poland in the Sandomierska Upland in 2022. The aim of the research was to demonstrate the influence of grape variety on yield capacity in relation to the extraction of biomass residues in the form of leaves. An attempt was made to identify the variety that is characterised by obtaining the most effective and average parameters, i.e. yield size and quality, leaf mass and surface area, and their impact on energy and fuel parameters. The study analysed the following crop parameters, i.e. number and mass of grapes, number and mass of berries; leaf quality parameters, i.e. mass including petioles and area. An energy assessment in Laboratory in Department of Power Engineering and Transportation was carried out by performing proximate and ultimate analysis and estimating emission factors and volumetric composition of exhaust gas. The study showed that the material with the highest energy potential was characterised by ‘Regent’, while the lowest potential was shown for ‘Rondo’. Grapevines of the ‘Rondo’ cultivar were characterised by the highest obtained biomass among the evaluated varieties. The research showed that the most effective in practical cultivation is the use of the Regent variety, which was characterised by the average parameters of the obtained yield and growth values, and the highest fuel energy potential.
Słowa kluczowe
Wydawca

Rocznik
Tom
Strony
68--75
Opis fizyczny
Bibliogr. 43 poz., rys., tab.
Twórcy
  • University of Life Sciences in Lublin, Institute of Horticulture Production, Głęboka St, 28, 20-612 Lublin, Poland, magdalena.kaplan@up.lublin.pl
  • University of Life Sciences in Lublin, Department of Applied Mathematics and Computer Science, Lublin, Poland, kamila.klimek@up.lublin.pl
  • University of Life Sciences in Lublin, Department of Power Engineering and Transportation, Lublin, Poland, grzegorz.maj@up.lublin.pl
  • University of Life Sciences in Lublin, Institute of Horticulture Production, Głęboka St, 28, 20-612 Lublin, Poland, kamil.buczynski@up.lublin.pl
Bibliografia
  • Alves, J.L.F. et al. (2020) “Insights into the bioenergy potential of jackfruit wastes considering their physicochemical properties, bioenergy indicators, combustion behaviors, and emission characteristics,” Renewable Energy, 155, pp. 1328–1338. Available at: https://doi.org/10.1016/j.renene.2020.04.025.
  • Alves, J.L.F. et al. (2022) “Upgrading of banana leaf waste to produce solid biofuel by torrefaction: Physicochemical properties, combustion behaviors, and potential emissions,” Environmental Science and Pollution Research, 29, pp. 25733–25747. Available at: https://doi.org/10.1007/s11356-021-17381-x.
  • Araujo, R.O. et al. (2022) “Renewable energy from biomass: An overview of the Amazon Region,” BioEnergy Research, 15, pp. 834–849. Available at: https://doi.org/10.1007/s12155-021-10308-x.
  • Brito, P.S.D., Oliveira, A.S. and Rodrigues, L.F. (2014) “Energy valorization of solid vines pruning by thermal gasification in a pilot plant,” Waste Biomass Valorisation, 5, pp. 181–187. Available at: https://doi.org/10.1007/s12649-013-9246-7.
  • Buttaro, D. et al. (2015) “Erratum to: Simple and accurateallometric model for leaf area estimation in Vitis vinifera L. genotypes,” Photosynthetica, 53(3), pp. 342–348. Available at: https://doi.org/10.1007/s11099-015-0134-1.
  • Cavalaglio, G. et al. (2020) “Characterization of various biomass feedstock suitable for small-scale energy plants as preliminary activity of Biocheaper Project,” Sustainability, 12(16), 6678. Available at: https://doi.org/10.3390/su12166678.
  • Cuong, T.T. et al. (2021) “Renewable energy from biomass surplus resource: potential of power generation from rice straw in Vietnam,” Scientific Reports, 11, 792. Available at: https://doi.org/10.1038/s41598-020-80678-3.
  • Directive (2001) “Directive 2001/77/EC of the European Parliament and the Council on 27 September 2001 of the promotion of electricity produced from renewable energy sources in the internal market,” Official Journal, L 283. Available at: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CE-LEX:32001L0077 (Accessed: October 27, 2001).
  • Dybek, B. et al. (2023) “Assessment of the prospects of Polish non-food energy agriculture in the context of a renewable energy source,” Energies, 16, 3315. Available at: https://doi.org/10.3390/en16083315.
  • Florindo, T. et al. (2022) “Residual biomass recovery in the wine sector: Creation of value chains for vine pruning,” Agriculture, 12, 670. Available at: https://doi.org/10.3390/agriculture12050670.
  • Güleç, F. et al. (2022) “Predictability of higher heating value of biomass feedstocks via proximate and ultimate analyses – A comprehensive study of artificial neural network applications,” Fuel, 320, 123944. Available at: https://doi.org/10.1016/j.fuel.2022.123944.
  • GUS (2019a) Energia ze źródeł odnawialnych w 2018 r. [Energy from renewable sources in 2018]. Warszawa: Główny Urząd Statystyczny. Available at: https://stat.gov.pl/obszary-tematyczne/srodowisko-energia/energia/energia-ze-zrodel-odnawialnych-w-2018-roku,10,2.html (Accessed: November 18, 2020).
  • GUS (2019b) Użytkowanie gruntów i powierzchnia zasiewów w 2018 r. [Land use and sown area in 2018]. Warszawa: Główny Urząd Statystyczny. Available at: https://stat.gov.pl/obszary-tematyczne/rolnictwo-lesnictwo/rolnictwo/uzytkowanie-gruntow-i-powierzchnia-zasiewow-w-2018-roku,8,14.html (Accessed: March 31, 2020).
  • GUS (2020) Energia ze źródeł odnawialnych w 2019 r. [Energy from renewable sources in 2018]. Warszawa: Główny Urząd Statystyczny. Available at: https://stat.gov.pl/files/gfx/portalinformacyjny/pl/defaultaktualnosci/5485/10/3/1/energia_ze_zrodel_odnawialnych_w_2019.pdf (Accessed: January 28, 2022).
  • Intrieri, C. et al. (2011) “The semi-minimal-pruned hedge: A novel mechanized grapevine training system,” American Journal of Enology and Viticulture, 62(3), pp. 312–318. Available at: https://doi.org/10.5344/ajev.2011.10083.
  • Intrigliolo, D.S. and Castel, J.R. (2010) “Response of grapevine cv. ‘Tempranillo’ to timing and amount of irrigation: water relations, vine growth, yield and berry and wine composition,” Irrigation Science, 28, pp. 113–125. Available at: https://doi.org/10.1007/s00271-009-0164-1.
  • Ion, V.A. et al. (2021) “Physicochemical characterisation of vine waste used for producing biochar,” Horticulture, 65(2), pp. 268–273. Available at: https://horticulturejournal.usamv.ro/pdf/2021/is-sue_2/Art36.pdf (Accessed: April 22, 2021).
  • ISO 1928:2020. Coal and coke – Determination of gross calorific value. Geneva: International Organization for Standardization. Available at: https://www.iso.org/standard/75883.html (Accessed: October 25, 2023).
  • ISO 14780:2017. Solid biofuels. Sample preparation. Geneva: International Organization for Standardization. Available at: https://www.iso.org/standard/66480.html (Accessed: October 25, 2023).
  • ISO 18122:2022. Solid biofuels – Determination of ash content. Geneva: International Organization for Standardization. Available at: https://www.iso.org/standard/83190.html (Accessed: October 25, 2023).
  • ISO 18123:2023. Solid biofuels – Determination of the content of volatile matter. Geneva: International Organization for Standardization. Available at: https://www.iso.org/standard/83192.html (Accessed: October 25, 2023).
  • ISO 18134-3:2023. Solid biofuels – Determination of moisture content. Part 3: Moisture in general analysis sample. Geneva: International Organization for Standardization. Available at: https://www.iso.org/standard/61637.html (Accessed: October 25, 2023).
  • Jarosz, Z. (2017) “Potencjał energetyczny biomasy roślinnej i możliwości wykorzystania do celów energetycznych [Energy potential of agricultural crops biomass and their use for energy purposes],” Zeszyty Naukowe Szkoły Głównej Gospodarstwa Wiejskiego w Warszawie. Problematyka Rolnictwa Światowego, 17(2), pp. 81–92. Available at: https://doi.org/10.22630/PRS.2017.17.2.28.
  • Jasiulewicz, M. (2015) “Produkcja energii z agrobiomasy w Polsce na tle wybranych krajów Unii Europejskiej [Production of energy from agribiomass in Poland in the background of selected countries of the European Union],” Roczniki Naukowe. Stowarzyszenie Ekonomistów Rolnictwa i Agrobiznesu, 17(2), pp. 94–99. Available at: https://doi.org/10.22004/ag.econ.233112.
  • King, P.D., McClellan, D.J. and Smart, R.E. (2012) “Effect of severity of leaf and crop removal on grape and wine composition of Merlot vines in Hawkes Bay vineyards,” American Journal of Enology and Viticulture, 63(4), pp. 500–507. Available at: https://doi.org/10.5344/ajev.2012.12020.
  • Klimek, K.E., Kapłan, M. and Maj, G. (2023) “The evaluation of energy from grapevine shoots used as biomass depending on the cultivar,” Journal of Water and Land Development, 58, pp. 120–128. Available at: https://doi.org/10.24425/jwld.2023.146604.
  • Kurchania, A.K. (2012) “Biomass energy,” in C. Baskar, S. Baskar and R. Dhillon (eds.) Biomass conversion. Berlin, Heidelberg: Springer, pp. 91–122. Available at: https://doi.org/10.1007/978-3-642-28418-2_2.
  • Lazarus, M. and Asselt van, H. (2018) “Fossil fuel supply and climate policy: exploring the road less taken,” Climatic Change, 150, pp. 1–13. Available at: https://doi.org/10.1007/s10584-018-2266-3.
  • Malaťák, J., Bradna, J. and Velebil, J. (2017) “The dependence of COx and Nox emission concentrations on the excess air coefficient during combustion of selected agricultural briquetted by-products,” Agronomy Research, 15(1), pp. 1084–1093. Available at: https://agronomy.emu.ee/wp-content/uploads/2017/05/Vol15SP1_Malatak.pdf (Accessed: January 1, 2017).
  • Malaťák, J. and Passian, L. (2011) “Heat-emission analysis of small combustion equipments for biomass,” Research in Agricultural Engineering, 57, pp. 37–50. Available at: https://doi.org/10.17221/28/2010-RAE.
  • McKendry, P. (2002) “Energy production from biomass (part 1): Overview of biomass,” Bioresource Technology, 83(1), pp. 37–46. Available at: https://doi.org/10.1016/S0960-8524(01)00118-3.
  • Mikiciński, A. et al. (2020) “Bacterial etiology of necrotic spots on leaves and shoots of grapevine (Vitis vinifera L.) in Poland,” European Journal of Plant Pathology, 156, pp. 913–924. Available at: https://doi.org/10.1007/s10658-020-01943-9.
  • Nunes, L.J.R. et al. (2021) “Production of biochar from vine pruning: waste recovery in the wine industry,” Agriculture, 11(6), 489. Available at: https://doi.org/10.3390/agriculture11060489.
  • OIV (2021) State of the world vitivinicultural sector in 2020. Dijon: International Organisation of Vine and Wine Intergovernmental Organisation. Available at: https://www.oiv.int/public/medias/7909/oiv-state-of-the-world-vitivinicultural-sector-in-2020.pdf (Acessed: November 26, 2021).
  • PN-EN ISO 16948:2015-07. Biopaliwa stałe – Oznaczanie całkowitej zawartości węgla, wodoru i azotu [Solid biofuels – Determination of total content of carbon, hydrogen and nitrogen]. Warszawa: Polski Komitet Normalizacyjny. Available at: https://sklep.pkn.pl/pn-en-iso-16948-2015-07e.html (Acessed: November 26, 2021).
  • PN-EN ISO 16994:2016-10. Biopaliwa stałe – Oznaczanie całkowitej zawartości siarki i chloru [Solid biofuels – Determination of total content of sulfur and chlorine]. Warszawa: Polski Komitet Normalizacyjny. Available at: https://sklep.pkn.pl/pn-en-iso-16994-2016-10e.html (Accessed: November 26, 2021).
  • Poni, S. et al. (2018) “Grapevine quality: A multiple choice issue,” Scientia Horticulturae, 234, pp. 455–462. Available at: https://doi.org/10.1016/j.scienta.2017.12.035.
  • Rahimi, Z., Anand, A. and Gautam, S. (2022) “An overview on thermochemical conversion and potential evaluation of biofuels derived from agricultural waste,” Energy Nexus, 7, 100125. Available at: https://doi.org/10.1016/j.nexus.2022.100125.
  • Reynolds, A. and Wardle, D. (2001) “Rootstocks impact vine performance and fruit composition of grapes in British Columbia,” HortTechnology, 11(3), pp. 419–427. Available at: https://doi.org/10.21273/HORTTECH.11.3.419.
  • Soltekin, O. et al. (2022) “Combined effects of pruning and crop removal levels on yield, quality, and physiological properties in ‘Merlot’ and ‘Cabernet Sauvignon’ grapevines,” Erwerbs-Obstbau, 64(Suppl. 1), pp. 129–140. Available at: https://doi.org/10.1007/s10341-022-00719-1.
  • Tapaskar, R.P. et al. (2018) “Biomass energy and bio-solar hybrid energy systems,” in L. Martínez, O. Kharissova, B. Kharisov (eds.) Handbook of Ecomaterials, pp. 1–12, Cham: Springer. Available at: https://doi.org/10.1007/978-3-319-48281-1_187-1.
  • Ţenu, I. et al. (2021) “Valorization of vine tendrils resulted from pruning as densified solid biomass fuel (briquettes),” Processes, 9(8), 1409. Available at: https://doi.org/10.3390/pr9081409.
  • Torreiro, Y. et al. (2020) “The role of energy valuation of agroforestry biomass on the circular economy,” Energies, 13(10), 2516. Available at: https://doi.org/10.3390/en13102516.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-1b8f1943-78c8-4f6c-8156-e879a4bcc11c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.