Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | Vol. 21, nr 2 | 147--160
Tytuł artykułu

Evolution and monotonicity of the first eigenvalue of p-Laplacian under the Ricci-harmonic flow

Autorzy
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We study the evolution and monotonicity of the eigenvalues of p-Laplace operator on an m-dimen-sional compact Riemannian manifold M whose metric g(t) evolves by the Ricci-harmonic flow. The first nonzero eigenvalue is proved to be monotonically nondecreasing along the flow and differentiable almost everywhere. As a corollary, we recover the corresponding results for the usual Laplace-Beltrami operator when p = 2. We also examine the evolution and monotonicity under volume preserving flow and it turns out that the first eigenvalue is not monotone in general.
Wydawca

Rocznik
Strony
147--160
Opis fizyczny
Bibliogr. 18 poz.
Twórcy
Bibliografia
  • [1] X. Cao, Eigenvalues of (-Δ + R/2) on manifolds with nonnegative curvature operator, Math. Ann. 337 (2007), no. 2, 435-442.
  • [2] X. Cao, First eigenvalues of geometric operators under the Ricci flow, Proc. Amer. Math. Soc. 136(2008), no. 11, 4075-4078.
  • [3] B. Chow and D. Knopf, The Ricci Flow: An Introduction, American Mathematical Society, Providence, 2004.
  • [4] J. Eells and J. H. Sampson, Harmonic mappings of Riemannian manifold, Amer. J. Math. 86 (1964), 109-160.
  • [5] H. Guo, R. Philipowski and A. Thalmaier, Entropy and lowest eigenvalue on evolving manifolds, Pacific J. Math. 264 (2013), 61-82.
  • [6] R. Hamilton, Three-manifolds with positive Ricci curvature, J. Differential Geometry 17 (1982), no. 2, 253-306.
  • [7] T. Kato, Perturbation Theory for Linear Operator, Springer, Berlin, 1984.
  • [8] B. Kleiner and J. Lott, Note on Perelman's paper, Geom. Topol. 12 (2008), 2587-2858.
  • [9] J.-F. Li, Eigenvalues and energy functionals with monotonicity formulae under Ricci flow, Math. Ann. 338 (2007), no. 4, 927-946.
  • [10] J. Li, Monotonicity formulae under rescaled Ricci flow, preprint (2007), http://arxiv.org/abs/0710.5328v3.
  • [11] Y. Li, Eigenvalues and entropies under the harmonic-Ricci flow, Pacific J. Math. 267 (2014), no. 1,141-184.
  • [12] B. List, Evolution of an extended Ricci flow system, Comm. Anal. Geom. 16(2008), no. 5,1007-1048.
  • [13] L. Ma, Eigenvalue monotonicity for the Ricci-Hamilton flow, Ann. Global Anal. Geom. 29 (2006), no. 3, 287-292.
  • [14] R. Muller, Ricci flow coupled with harmonic map flow, Ann. Sci. Ec. Norm. Super. (4) 45 (2012), no. 1, 101-142.
  • [15] G. Perelman.The entropy formula for the Ricci flow and its geometric application, preprint (2002), arXiv:math.DG/0211159vl.
  • [16] J. Wu, First eigenvalue monotonicity for the p-Laplace operator under the Ricci flow, Acta Math. Sin. (Engl. Ser.) 27 (2011), no. 8, 1591-1598.
  • [17] J. Wu, E.-M. Wang and Y. Zheng, First eigenvalue of p-Laplace operator along the Ricci flow, Ann. Global Anal. Geom. 38 (2010), no. 1, 27-55.
  • [18] L. Zhao, The first eigenvalue of p-Laplace operator under powers of the mth mean curvature flow, Results Math. 63 (2013), 937-948.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-1b80c99b-322c-410f-bea4-01b2898b4069
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.