Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2005 | Vol. 25, Fasc. 2 | 289--306
Tytuł artykułu

Periodic observations of harmonizable symmetric stable sequences

Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
For harmonizable symmetric stable sequences we solve the following prediction problem: Assume that the values of the sequence are known at all odd integers. Compute the metric projection of an unknown value onto the space spanned by the known values as well as the corresponding approximation error. We study several questions related to this prediction problem such as regularity and singularity, Wold type decomposition, interrelations between the spaces spanned by the values at the even and odd integers, respectively.
Wydawca

Rocznik
Strony
289--306
Opis fizyczny
Bibliogr. 20 poz.
Twórcy
autor
  • Fakultät für Mathematik und Informatik, Universität Leipzig, 04109 Leipzig, Germany
autor
Bibliografia
  • [1] S. Cambanis, Complex symmetric stable variables and processes, in: Contribution to Statistics, P. K. Sen (Ed.), North-Holland, New York 1983, pp. 63-79.
  • [2] S. Cambanis, C. D. Hardin, and A. Weron, Innovations and Wold decompositions of stable sequences, Probab. Theory Related Fields 79 (1988), pp. 1-27.
  • [3] S. Cambanis and A. G. Miamee, On prediction of harmonizable stable processes, Sankhyā Ser. A 51 (1989), pp. 269-294.
  • [4] S. Cambanis and G. Miller, Linear problems in pth order and stable processes, SIAM J. Appl. Math. 41 (1981), pp. 43-69.
  • [5] S. Cambanis and A. R. Soltani, Prediction of stable processes: Spectral and moving average representations, Z. Wtrhrscheinlichkeitstheorie verw. Gebiete 66 (1984), pp. 593-612.
  • [6] C. D. Hardin, Jr., On the spectral representation of symmetric stable processes, J. Multivariate Anal. 12 (1982), pp. 385-401.
  • [7] M. Hernández and C. Houdre, Disjointness results for some classes of stable processes, Studia Math. 105 (1993), pp. 235-252.
  • [8] Y. Hosoya, Harmonizable stable processes, Z. Wahrscheinlichkeitstheorie verw. Gebiete 60 (1982), pp. 517-533.
  • [9] T. Kato, Perturbation Theory for Linear Operators, Springer, Berlin-Heidelberg-New York 1966.
  • [10] L. Klotz, An interpolation problem for Hilbert-Schmidt operator-valued stationary processes, Z. Anal. Anwendungen 20 (2001), pp. 525-535.
  • [11] L. Klotz, Some remarks on an interpohtion problem of A. M. Yaglom, submitted to Teor. Veroyatnost. i Primenen, (2005).
  • [12] F. Mazzone, On the norm of the metric projections, J. Approx. Theory 97 (1999), pp. 214-219.
  • [13] M. Pourahmadi, On minimality and interpolation of harmonizable stable processes, SIAM J. Appl. Math. 44 (1984), pp. 1023-1030.
  • [14] H. Salehi, On interpolation of q-variate stationary stochastic processes, Pacific J. Math. 28 (1969), pp. 183-191.
  • [15] G. Samorodnitsky and M. S. Taqqu, Stable Non-Gaussian Random Processes. Stochastic Models with Infinite Variance. Stochastic Modeling, Chapman & Hall, New York 1994.
  • [16] I. Singer, Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces, Springer, Berlin-Heidelberg-New York 1970.
  • [17] A. Weron, Harmonizable stable processes on groups: Spectral, ergodic and interpolation properties, Z. Wahrscheinlichkeitstheorie verw. Gebiete 68 (1985), pp. 473-491.
  • [18] A. Weron, A remark on disjointness results for stable processes, Studia Math. 105 (1993), pp. 253-254.
  • [19] A. Weron, Stable Processes and Measures: A Survey, Lecture Notes in Math. 1080, Springer, Berlin-Heidelberg-New York 1984, pp. 306-364.
  • [20] A. M. Yaglom, On problems about the linear interpolation of stationary random sequences and processes (in Russian), Uspekhi Mat. Nauk 4 (1949), pp. 173-178.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-1b6b2d3f-278f-4144-a974-1e6a2d2a1495
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.