Warianty tytułu
Języki publikacji
Abstrakty
This study deals with a comparison of mechanical properties of a conventional yarn and a textile from nanofibres. The conventional yarn represents the textile objects with high degree of orientation of fibres and the textile from nanofibres represents the textile objects with low degree of orientation of fibres. The theoretical section is concerned with the issue of internal structure of plied yarn and resulting differences in the orientation and straightening of fibres and in utilisation of deformation properties of fibres in comparison to the referred nano textile. The experimental section describes the manner of realisation of both static and dynamic tests of conventional yarn and strips of nanofibres. The results show differences in the mechanical properties of conventional yarn and textile strip from nanofibres under static and dynamic loading conditions. The processing technology of conventional yarn has been verified in the long term. But textiles from nanofibres are a relatively new material and mechanical properties of the detected differences point out possible problems with their behaviour during standard technological processes.
Czasopismo
Rocznik
Tom
Strony
198--206
Opis fizyczny
Bibliogr. 18 poz.
Twórcy
autor
- Technical University of Liberec, Faculty of Mechanical Engineering, Studentská 2, 461 17 Liberec, Czech Republic, phone number: +420 48 3426
- Technical University of Liberec, Faculty of Textile Engineering, Studentská 2, 461 17 Liberec, Czech Republic, phone number: +420 48 535 3274
autor
- Technical University of Liberec, Faculty of Mechanical Engineering, Studentská 2, 461 17 Liberec, Czech Republic, phone number: +420 48 3426, martin.bilek@tul.cz
- Technical University of Liberec, Faculty of Textile Engineering, Studentská 2, 461 17 Liberec, Czech Republic, phone number: +420 48 535 3274
autor
- Technical University of Liberec, Faculty of Mechanical Engineering, Studentská 2, 461 17 Liberec, Czech Republic, phone number: +420 48 3426, eva.mouckova@tul.cz
- Technical University of Liberec, Faculty of Textile Engineering, Studentská 2, 461 17 Liberec, Czech Republic, phone number: +420 48 535 3274
autor
- Technical University of Liberec, Faculty of Mechanical Engineering, Studentská 2, 461 17 Liberec, Czech Republic, phone number: +420 48 3426
- Technical University of Liberec, Faculty of Textile Engineering, Studentská 2, 461 17 Liberec, Czech Republic, phone number: +420 48 535 3274
autor
- Technical University of Liberec, Faculty of Mechanical Engineering, Studentská 2, 461 17 Liberec, Czech Republic, phone number: +420 48 3426
- Technical University of Liberec, Faculty of Textile Engineering, Studentská 2, 461 17 Liberec, Czech Republic, phone number: +420 48 535 3274
autor
- Technical University of Liberec, Faculty of Mechanical Engineering, Studentská 2, 461 17 Liberec, Czech Republic, phone number: +420 48 3426
- Technical University of Liberec, Faculty of Textile Engineering, Studentská 2, 461 17 Liberec, Czech Republic, phone number: +420 48 535 3274
Bibliografia
- [1] Jose M.V., Steinert, B.W., Thomas, V., Dean, D.R., Abdalla, M.A., et al. (2006). Morphology and mechanical properties of Nylon 6/MWNT nanofibres. Polymer, 48 (2007),1096-1104.
- [2] Pant, H., R., Bajgai, M., P., Chuan Yi, Nirmala, R., Ki Taek Nam, et al. (2010). Effect of succesive electrospinign and the strendht of hydrogen bond on the morphology of efectrospun nylon-6 nanofibres. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 370(1-3), 87-94.
- [3] Heikkila P., Harlin, A. (2008). Parameter study of electrospinning of polyamide-6. European Polymer Journal, 44 (2008), 3067-3079.
- [4] Huang, Z-M., Zhang, Y-Z., Kotaki, M., Ramakrishna, S. (2003). A review on polymer nanofibers by electrospinning and their application in nanocomposites. Composites science and technology, 2003, 2223-2253.
- [5] Yarin, A.L., Zussman, E. (2004). Upward needleless electrospinning of multiple nanofibers. Polymer, 45 (2004), 2977-2980.
- [6] Haitao, N., L. Tong, W. Xungai (2009). Needleless Electrospinning. I. A Comparison of Cylinder and Disk Nozzles. Journal of Applied Polymer Science, 114 (6), 3524-3530.
- [7] Pilehrood, M. K., Heikkilä, P., Harlin, A.: Preparation of carbon nanotube embedded in polyacrylonitrile (pan) nanofibre composites by electrospinning process. Autex Research Journal, 12(1), 1–6.
- [8] Krucińska, I., Boguń, M., Chrzanowska, O., Chrzanowski, M., Król, P. (2013). Research concerning fabrication of fibrous osteoconductive plga/hap nanocomposite material using the method of electrospinning from polymer solution. Autex Research Journal, 13(3), 57–66.
- [9] Cheng, T., Hund, R., Dilibaier Aibibu, Horakova, J., Chokri Cherif (2013). Pure Chitosan and Chitsoan/Chitosan Lactate Blended Nanofibres made by Single Step Electrospinning. Autex Research Journal, 13 (4), 128–133.
- [10] Pokorny, P., Kostakova, E., Sanetrnik, F., Mikes, P., Chvojka, J., Kalous, T., Bilek, M., et al. (2014). Effective AC needleless and collectorless electrospinning for yarn production. Physical Chemistry Chemical Physics. 2014.
- [11] Tumajer P., Ursíny P., Bílek M., Moučková E. (2011). Research Methods for the Dynamic Properties of Textiles. FIBRES & TEXTILES in Eastern Europe, 19 (5), 33-39.
- [12] Morton, W. E.; Hearle, J. W. S. (1962). Physical properties of textile fibres. The Textile Institute, Butterworths, (Manchester & London).
- [13] Ursíny, P. (1992). Teorie předení I, VŠST (Liberec).
- [14] Lukáš, D., Sarkar, A., Martinová, L., Vodseďálková, K., Lubasová, D., et al. (2009) Physical principles of electrospinning (Electrospinning as a nano-scale technology of twenty-first century), Textile Progress, 41 (2009), 59-140.
- [15] Tumajer, P., Ursíny. P., Bílek, M., Moučková, E. (2011). Use of the Vibtex vibration system for testing textiles. Autex Research Journal, 11(2), 47-53.
- [16] Ursíny, P., Bílek, M., Tumajer, P., Moučková, E. (2009). Simulation des Textilmaterialverhaltens während des Webprozesses, Sammelbuch des Vortrages. 12. Chemnitzer Textiltechnik-Tagung Innovation mit textilen Strukturen. 30.9.-1.10.2009, p. 314 – 321. Technische Universität Chemnitz, (Chemnitz).
- [17] Snycerski, M. (1997). The pulsator - a generator of cyclic longitudinal impact loads to simulate weaving conditions for warp yarn. Fibres and Textiles in Eastern Europe, 5 (4), 65-67.
- [18] Vlasenko, V., Kovtun, S., Arabuli, A., Bereznenko, S. (2007): Application of the longitudinal resonance vibration method for an investigation of a textile’s visco-elastic properties. Vlakna a Textil, 14 (2), 11-14.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-1b673aed-2450-44e2-919f-7fac967231f9