Czasopismo
2017
|
Vol. 25, No. 3
|
251--262
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
The electron field and photo-field emission from GaN nanostructures has been analyzed in this review. In order to explain the obtained experimental results, a model was proposed taking into account the change in carrier concentration distribution in the main and the satellite valley during the emission process. The lowering of work function (due to the increased number of carriers in the satellite valley) can explain the decrease in the Fowler-Nordheim plot slope. It was shown that the energy difference between the main and satellite valley in GaN was decreased in the case of quantum confinement, thus increasing the probability of electron transition from Γ to X valley at same electric fields. Investigations of electron photo-field emission demonstrated that the Fowler-Nordheim plots of the emission current have different slopes for nonilluminated and illuminated devices. A model based on the electron emission from valleys having different specific electron affinities is proposed to explain the experimental results. In the absence of illumination the emission takes place only from the lower valley. Upon UV illumination and presence of a high electric field at the emitter tip, the upper valley of the conduction band appears to be occupied by electrons generated at the valence band.
Czasopismo
Rocznik
Tom
Strony
251--262
Opis fizyczny
Bibliogr. 91 poz., il., rys., wykr.
Twórcy
autor
- V. Lashkaryov Institute of Semiconductor Physics, 41 Nauki ave., 03028 Kyiv, Ukraine
autor
- V. Lashkaryov Institute of Semiconductor Physics, 41 Nauki ave., 03028 Kyiv, Ukraine, anatoliy.evtukh@gmail.com
autor
- V. Lashkaryov Institute of Semiconductor Physics, 41 Nauki ave., 03028 Kyiv, Ukraine
Bibliografia
- [1] H. Morkoc, Handbook of Nitride Semiconductors and Devices, Vol. 3, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2009 (ISBN:978-3-527-40839-9).
- [2] B. Gelmont, K. Kim, M. Shur, Monte Carlo simulation of electron transport in gallium nitride, J. Appl. Phys. 74 (1818) (1993).
- [3] S.C. Jain, M. Willander, J. Narayan, R. van Overstraeten, III–nitrides: growth, characterization, and properties, J. Appl. Phys. 87 (965) (2000).
- [4] B.K. Ridley, Exact electron momentum-relaxation times in GaN associated with scattering by polar-optical phonons, J. Appl. Phys. 84 (1998) 4020–4021.
- [5] U.V. Bhapkar, M.S. Shur, Monte Carlo calculation of velocity-field characteristics of wurtzite GaN, J. Appl. Phys. 82 (1649) (1997).
- [6] J. Kolnik, I.H. Oguzman, K.F. Brennan, Electronic transport studies of bulk zincblende and wurtzite phases of GaN based on an ensemble Monte Carlo calculation including a full zone band structure, J. Appl. Phys. 78 (1995) 1033.
- [7] H. Morkoc, Beyond SiC! III–V nitride based heterostructures and devices, in: Y.S. Park (Ed.), SiC Materials and Devices, Vol. 52, Academic Press, 1998, pp. 307–394, Willardson and Beer Series, (series eds R.K. Willardson and A.C. Beer) Chapter 8.
- [8] М.-C. Lin, K.-H. Huang, P.-S. Lu, P.-Y. Lin, R.F. Jao, Field-emission based vacuum device for the generation of terahertz waves, J. Vac. Sci. Technol. B 23 (2005) 849.
- [9] I. Brodie, C.A. Spindt, Vacuum microelectronics, in: P.W. Hawkes (Ed.), Advances in Electronics and Electron Physics, 83, Academic Press, New York, 1992, pp. 1–106.
- [10] K. Yokoo, Functional field emission for high frequency wave application, in: Technical Digest of IV MC 99, 1999, pp. 206–220 (Darmstadt, Germany).
- [11] O. Yilmazoglu, H. Mimura, K. Mutamba, H. Hartnagel, K. Okamura, H. Shimawaki, K. Yokoo, Generation of a bunched electron beam by field-emitter structures, in: ITG Proc. 165, Conference on Displays and Vacuum Electronics, Garmisch-Partenkirchen, Germany, (May 2001), 2001, pp. 263–267.
- [12] E.G. Zaidman, M.A. Kodis, Emission gated device issues, IEEE Trans. Elec. Dev. 38 (1991) 2221.
- [13] D.R. Whaley, B.M. Gannon, C.R. Smith, C.M. Armstrong, C.A. Spindt, Application of field emitter arrays to microwave power amplifiers, IEEE Trans. Plasma Sci. 28 (2000) 727.
- [14] X. Duan, Y. Huang, Y. Cui, J. Wang, C.M. Lieber, Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices, Nature 409 (2001) 66.
- [15] W.Q. Han, S.S. Fan, Q.Q. Li, Y.D. Hu, Synthesis of gallium nitride nanorods through a carbon nanotube-confined reaction, Science 277 (1997) 1287.
- [16] H. Yoshida, T. Urushido, H. Miyake, K. Hiramatsu, Formation of GaNself-organized nanotips by reactive ion etching, Jpn. J. Appl. Phys. 40 (2001) L 1301.
- [17] J.L. Shaw, H.F. Gray, K.L. Jensen, T.M. Jung, Graded electron affinity electron source, J. Vac. Sci. Technol. B 14 (1996) 2072.
- [18] T. Sugino, T. Hori, C. Kimura, T. Yamamoto, Field emission from GaN surfaces roughened by hydrogen plasma treatment, Appl. Phys. Lett. 78 (2001) 3229.
- [19] R.J. Nemanich, M.C. Benjamin, S.P. Bozeman, M.D. Bremser, S.W. King, B.L. Ward, R.F. Davis, B. Chen, Z. Zhang, J. Bernhole, Negative electron affinity of AlN and AlGaN alloys, Mater. Res. Soc. Symp. Proc. 395 (1996) 777.
- [20] J.I. Pankove, H. Schade, Photoemission from GaN, Appl. Phys. Lett. 25 (1974)53.
- [21] W. Czarczynski, S. Lasisz, M. Moraw, R. Paszkiewicz, M. Tlaczala, Z. Znamirowski, Field emission from GaN deposited on the (100) Si substrate, Appl. Surf. Sci. 151 (1999) 63.
- [22] I. Berishev, A. Bensaoula, A. Rusakova, M. Karabutov Uagarov, V.P. Ageev, Field emission properties of GaN films on Si (111), Appl. Phys. Lett. 73 (1808) (1998).
- [23] B.L. Ward, O.-H. Nam, J.D. Hartman, S.L. English, B.L. McCarson, R. Schlesser, Z.Sitar, R.F. Davis, R.J. Nemanich, Electron emission characteristics of GaN pyramid arrays grown via organometallic vapor phase epitaxy, J. Appl. Phys. 84 (5238) (1998).
- [24] B. Liu, Y. Bando, C. Tang, F. Xu, J. Hu, D. Golberg, Needlelike bicrystalline GaN nanowires with excellent field emission properties, J. Phys. Chem. B 109 (2005) 17082.
- [25] D.K.T. Ng, M.H. Hong, L.S. Tan, Y.W. Zhu, C.H. Sow, Field emission enhancement from patterned gallium nitride nanowires, Nanotechnology 18 (2007) 375707.
- [26] C.C. Chen, C.C. Yeh, C.H. Chen, M.Y. Yu, H.L. Liu, J.J. Wu, K.-H. Chen, L.-C. Chen, J.-Y. Peng, Y.-F. Chen, Catalytic growth and characterization of gallium nitride nanowires, J. Am. Chem. Soc. 123 (2001) 2791.
- [27] X. Xiang, H. Zhu, One-dimensional gallium nitride micro/nanostructures synthesized by a space-confined growth technique, Appl. Phys. A 87 (2007) 651.
- [28] Z. Chen, C.B. Cao, W.S. Li, C. Surya, Well-aligned single-crystalline GaN nanocolumns and their field emission properties, Cryst. Growth Des. 9 (2009) 792.
- [29] G.S. Cheng, L.D. Zhang, Y. Zhu, G.T. Fei, L. Li, C.M. Mo, Y.Q. Mao, Large-scale synthesis of single crystalline gallium nitride nanowires, Appl. Phys. Lett. 75 (1999) 2455.
- [30] Z. Liliental-Weber, Y. Chen, S. Ruvimov, J. Washburn, Formation mechanism of nanotubes in GaN, Phys. Rev. Lett. 79 (1997) 2835.
- [31] J.Y. Li, Z.Y. Qiao, X.L. Chen, Y.G. Cao, Y.C. Lan, C.Y. Wang, Morphologies of GaN one-dimensional materials, Appl. Phys. A 71 (2000) 587.
- [32] S.Y. Bae, H.W. Seo, J. Park, H. Yang, J.C. Park, S.Y. Lee, Single-crystalline gallium nitride nanobelts, Appl. Phys. Lett. 81 (2002) 126.
- [33] J. Su, G. Cui, M. Gherasimova, H. Tsukamoto, J. Han, D. Ciuparu, S. Lim, L. Pfefferle, Y. He, A.V. Nurmikko, C. Broadbridge, A. Lehman, Catalytic growth of group III-nitride nanowires and nanostructures by metalorganic chemical vapor deposition, Appl. Phys. Lett. 86 (2005) 013105.
- [34] S. Gupta, H. Kang, M. Strassburg, A. Asghar, M. Kane, W.E. Fenwick, N. Dietz, I.T. Ferguson, A nucleation study of group III-nitride multifunctional nanostructures, J. Cryst. Growth 287 (2006) 596.
- [35] G. Nabi, C. Cao, W.S. Khan, S. Hussain, Z. Usman, M. Safdar, S.H. Shah, N.A.D. Khattak, Synthesis, characterization, growth mechanism, photoluminescence and field emission properties of novel dandelion-like gallium nitride, Appl. Surf. Sci. 257 (2011) 10289.
- [36] B. Liu, Y. Bando, C. Tang, F. Xu, D. Golberg, Quasi-aligned single-crystalline GaN nanowire arrays, Appl. Phys. Lett. 87 (2005) 073106.
- [37] B. Ha, S.H. Seo, J.H. Cho, C.S. Yoon, J. Yoo, G.C. Yi, C.Y. Park, C.J. Lee, Optical and field emission properties of thin single-crystalline GaN nanowires, J. Phys. Chem. B 109 (2005) 11095.
- [38] X.F. Duan, C.M. Liber, Laser-assisted catalytic growth of single crystal GaN nanowires, J. Am. Chem. Soc. 122 (2000) 188.
- [39] T.Y. Kim, S.H. Lee, Y.H. Mo, H.W. Shim, K.S. Nahm, E.-K. Suh, J.W. Yang, K.Y. Lim, G.S. Park, Growth of GaN nanowires on Si substrate using Ni catalyst in vertical chemical vapor deposition reactor, J. Cryst. Growth 257 (2003) 97.
- [40] T.Y. Kim, S.H. Lee, Y.H. Mo, H.W. Shim, K.S. Nahm, E.-K. Suh, G.S. Park, Growth of GaN nanowires on Si substrate using Ni catalyst in vertical chemical vapor deposition reactor, Korean J. Chem. Eng. 21 (2004) 257.
- [41] Y. Terada, H. Yoshida, T. Urushido, H. Miyake, K. Hiramatsu, Field emission from GaN self-organized nanotips, Jpn. J. Appl. Phys. 2 (41) (2002) L 1194.
- [42] P.B. Shah, B.M. Nichols, M.D. Derenge, K.A. Jones, Sub-100 nm radius of curvature wide-band gap III-nitride vacuum microelectronic field emitter structures created by inductively coupled plasma etching, J. Vac. Sci. Technol. A 22 (1847) (2004).
- [43] C.A. Brau, High-brightness photoelectric field-emission cathodes for free-electron laser applications, Nucl. Instr. Meth. A 393 (1997) 426.
- [44] Yu. Pozhela, K. Pozhela, P. Raguotis, V. Juciene, Transport in quantum well of GaAs at high electric field, Semiconductors 43 (2009) 1177–1181.
- [45] V.G. Mokerov, I.S. Vasilesky, B. Galiev, Yu Pozhela, Drift velocity of electrons in the quantum well at high electric fields, Semiconductors 43 (2009) 458–462.
- [46] A. Evtukh, H. Hartnagel, V. Litovchenko, O. Yulmazoglu, Two mechanism of negative dynamic conductivity and generation of oscillations in field-emission structures, Mater. Sci. Eng. A 353 (2003) 27–35.
- [47] B. Danilchenko, Determination of the LO phonons lifetime in GaN, Ukr. J. Phys. 54 (2009) 137–142.
- [48] V. Litovchenko, A. Evtukh, Vacuum nanoelectronics, in handbook of semiconductor nanostructures and nanodevices, in: A.A. Balandin, K.L. Wang (Eds.), Spintronics and Nanoelectronics, Vol. 3, American Scientific Publishers, Los Angeles, 2006, pp. 153–234.
- [49] V. Litovchenko, A.A. Grigoryev, Determination of the electron affinity (work function) of semiconductor nanocrystals, Ukr. J. Phys. 52 (897) (2007).
- [50] A.A. Evtukh, V.G. Litovchenko, N.I. Klyui, M.O. Semenenko, E.B. Kaganovich, E.G. Manoilov, Int. J. Nanotechnol. 3 (2006) 283–299.
- [51] V. Litovchenko, A. Evtukh, O. Yilmazoglu, K. Mutamba, H.L. Hartnagel, D. Pavlidis, Gunn effect in the field-emission phenomena, J. Appl. Phys. 97 (2005) 044911.
- [52] V. Litovchenko, A. Grigoriev, A. Evtukh, O. Yilmazoglu, H. Hartnagel, D. Pavlidis, Electron field emission from wide bandgap semiconductors under intervalley carrier redistribution, J. Appl. Phys. 106 (2009) (104511-1-104511-7).
- [53] V.G. Litovchenko, Emission characterisrics of semiconductor quantum cathodes, Ukr. J. Phys. 54 (2009) 181–186.
- [54] A. Evtukh, O. Yilmazoglu, V. Litovchenko, M. Semenenko, T. Gorbanyuk, A. Grygoriev, H. Hartnagel, Electron field emission from nanostructured surfaces of GaN and AlGaN, Phys. Stat. Sol. (C) 5 (2008) 425.
- [55] U.V. Bhapkar, M.S. Shur, Monte Carlo calculation of velocity-field characteristics of wurtzite GaN, J. Appl. Phys. 82 (1997) 1649.
- [56] V. Litovchenko, A. Evtukh, Yu. Kruchenko, N. Goncharuk, O. Yilmazoglu, K. Mutamba, H.L. Hartnagel, D. Pavlidis, Quantum size resonance tunneling in the field emission phenomenon, J. Appl. Phys. 96 (2004) 867.
- [57] V.G. Litovchenko, A.A. Evtukh, Yu M. Litvin, N.M. Goncharuk, H. Hartnagel, O. Yilmazoglu, D. Pavlidis, Peculiarities of the electron field emission from quantum-size structures, Appl. Surf. Sci. 215 (2003) 160.
- [58] O. Yilmazoglu, D. Pavlidis, Yu M. Litvin, S. Hubbard, I.M. Tiginyanu, K. Mutamba, H.L. Hartnagel, V.G. Litovchenko, A. Evtukh, Field emission from quantum size GaN structures, Appl. Surf. Sci. 220 (2003) 46.
- [59] O. Yilmazoglu, D. Pavlidis, H.L. Hartnagel, A. Evtukh, V. Litovchenko, N. Semenenko, Evidence of satellite valley position in GaN by photoexcited field emission spectroscopy, J. Appl. Phys. 103 (2008) 114511.
- [60] V. Litovchenko, A. Evtukh, O. Yilmazoglu, K. Mutamba, H.L. Hartnagel, D. Pavlidis, Gunn effect in the field-emission phenomena, J. Appl. Phys. 97 (2005) 044911.
- [61] S. Sze, Modern Semiconductor Device Physics, Wiley, New York, 1998.
- [62] R.J. Nemanich, Electron affinity of AlN, GaN and AlGaN alloys, in: J.H. Edgar, S. Strite, I. Akasaki, H. Amano, C. Wetzel (Eds.), Properties, Processing and A pplications of Gallium Nitride and Related Semiconductors, INSPEC, London, 1999, pp. 98–103.
- [63] V. Bugrov, M. Levinstein, S. Rumyantserv, A. Zubrilov, Advanced Semiconductor Materials, Wiley, New York, 2001, pp. 1–30.
- [64] N. Morgulis, About field emission composite semiconductor cathodes, J. Tech. Phys. 17 (983) (1947) (in Russian).
- [65] R. Stratton, Energy distributions of field emitted electrons, Phys. Rev. 135(1964) A 794.
- [66] B. Van Zeghbroeck, Principles of Semiconductor Devices (tutorial), 2007 http://ecee.colorado.edu/∼bart/book/book/index.html.
- [67] J. Kolnik, I.H. Oguzman, K.F. Brennan, Electronic transport studies of bulk zincblende and wurtzite phases of GaN based on an ensemble Monte Carlo calculation including a full zone band structure, J. Appl. Phys. 78 (1995) 1033.
- [68] J.M. Barker, D.K. Ferry, D.D. Koleske, R.J. Shul, Bulk GaN and AlGaN/GaN heterostructure drift velocity measurements and comparison to theoretical models, J. Appl. Phys. 97 (2005) 063705.
- [69] V. Dienys, J. Pozela, Hot Electrons, Mintis, Vilnius, 1971.
- [70] V.I. Gavrilenko, A.M. Grekhov, D.V. Korbutjak, V.G. Litovchenko, Optical Properties of Semiconductors, Naukova Dumka, Kiev, 1987.
- [71] Yu. Pozela, K. Pozela, V. Juciene, S. Balakauskas, V.P. Evtikhiev, A.S. Schkolnik, Yu. Storasta, A. Mekys, An increase in the electron mobility in the two-barrier AlGaAs/GaAs/AlGaAs heterostructure as a result of introduction of thin InAs barriers for polar optical phonons into the GaAs quantum well, Semiconductors 41 (2007) 1439.
- [72] V.G. Mokerov, Yu. K. Pozela, Yu.V. Fedorov, Electron transport in unipolar heterostructure transistors with quantum dots in strong electric fields, Semiconductors 37 (2003) 1217.
- [73] J. Pozela, K. Pozela, V. Juciene, Electron mobility and electron scattering by polar optical phonons in heterostructure quantum wells, Semiconductors 34 (2000) 1011.
- [74] C. Youtsey, L.T. Romano, R.J. Molnar, I. Adesida, Rapid evaluation of dislocation densities in n-type GaN films using photoenhanced wet etching, Appl. Phys. Lett. 74 (3537) (1999).
- [75] T. Utsumi, Vacuum microelectronics. What’s new and exciting, IEEE Trans. Electron. Dev. 38 (2276) (1991).
- [76] M.S. Shur, M.A. Khan, GaN and Related Materials II, in: S.J. Pearton (Ed.), Gordon and Breach, New York, 1999.
- [77] S. Nakamura, GaN and Related Materials II, in: S.J. Pearton (Ed.), Gordon and Breach, New York, 1999.
- [78] Y.C. Yeo, T.C. Chong, M.F. Li, Electronic band structures and effective-mass parameters of wurtzite GaN and InN, J. Appl. Phys. 83 (1429) 1998.
- [79] C. Bulutay, B.K. Ridley, N.A. Zakhleniuk, Full-band polar optical phonon scattering analysis and negative differential conductivity in wurtzite GaN, Phys. Rev. B 62 (2000) 15754.
- [80] C.-K. Sun, Y.-L. Huang, S. Keller, U.K. Mishra, S.P. DenBaars, Ultrafast electron dynamics study of GaN, Phys. Rev. B 59 (1999) 13535.
- [81] M.E. Levinshtein, S.L. Rumyantsev, M.S. Shur, Properties of Advanced Semiconductor Materials: GaN, AlN, InN, BN, SiC, SiGe, Wiley, New York, 2001.
- [82] Z. Liu, F. Machuca, P. Pianetta, W.E. Spider, R.F.W. Pease, Electron scattering study within the depletion region of the GaN (0001) and the GaAs (100) surface, Appl. Phys. Lett. 85 (1541) 2004.
- [83] M. Cardona, K.L. Shaklee, F.H. Pollak, Electroreflectance at a semiconductor-electrolyte interface, Phys. Rev. 154 (1967) 696.
- [84] E. Kisker, K. Shroder, M. Campagna, W. Gudat, Temperature dependence of the exchange splitting of Fe by spin-resolved photoemission spectroscopy with synchrotron radiation, Phys. Rev. Lett. 52 (1984) 2285.
- [85] R.D. Young, Theoretical total-energy distribution of field-emitted electrons, Phys. Rev. 113 (1959) 110.
- [86] R.D. Young, H.E. Clark, Effect of surface patch fields on field-emission work-function determinations, Phys. Rev. Lett. 17 (1966) 351.
- [87] R.D. Young, E.W. Muller, Progress in field-emission work-function measurements of atomically perfect crystal planes, J. Appl. Phys. 33 (1962) 91.
- [88] T. Radon, Photofield emission spectroscopy, Prog. Surf. Sci. 59 (1998) 331.
- [89] B.I. Lundqvist, K. Mountfield, J.W. Wilkins, Photo-field-emission: a new probe of electron states between the Fermi and vacuum levels, Solid State Commun. 10 (1972) 383.
- [90] M.J.G. Lee, R. Reifenberger, Periodic field-dependent photocurrent from a tungsten field emitter, Surf. Sci. 70 (1978) 114.
- [91] A. Evtukh, O. Yilmazoglu, V. Litovchenko, M. Semenenko, O. Kyriienko, H.L. Hartnagel, D. Pavlidis, Peculiarities of the photon-assisted field emissions from GaN nanorods, J. Vac. Sci. Technol. B 28 (2010) C2A72.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-1b39213b-d611-4b8f-bd3e-eeb0d295d0f5