Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | Vol. 19, no. 2-3 | 141--149
Tytuł artykułu

3D Segmentation of Funnel Flow Boundary During Silo Emptying

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents an automatic method for segmenting 3D tomography images of a funnel flow area, during silo emptying process. For generating 3D images the silo model was scanned using X-ray Computed Tomography (CT) system. The method has been applied for a chosen single slice from 3D image. The image segmentation is based on the variance of pixels calculation in defined interrogation window (or kernel). The analysis of Signalto- Noise-Ratio (SNR) of the given image allows to improve the contrast in the image and facilitate the detection the boundary between funnel area and stagnant zone. The obtained results of image segmentation show a high potential in the silo flow investigation using in-situ experiment using X-ray visualization. Additionally, the study indicates that, the separation of the silo area into the funnel and stagnant zone parts is a very challenging task especially for the top and bottom area of silo where the contrast is the smallest.
Wydawca

Rocznik
Strony
141--149
Opis fizyczny
Bibliogr. 16 poz., rys.
Twórcy
autor
  • Institute of Applied Computer Science, Lodz University of Technology
autor
  • Institute of Applied Computer Science, Lodz University of Technology
autor
Bibliografia
  • [1] Babout, L., Grudzien, K., Maire, E., Withers, P.J. (2013). Influence of wall roughness and packing density on stagnant zone formation during funnel flow discharge from a silo: An X-ray imaging study, Chemical Engineering Science, 97, 210-224
  • [2] Drescher, A., Ferjani, M. (2004). Revised model for plug/funnel flow in bins, Powder Technology, 141, 44-54
  • [3] Grudzien, K., Chaniecki, Z., Romanowski, A., Niedostatkiewicz, M., Sankowski, D. (2012). ECT Image Analysis Methods for Shear Zone Measurements during Silo Discharging Process, Chinese Journal of Chemical Engineering, 20, 337-345
  • [4] Grudzien, K., Niedostatkiewicz, M., Maire, E. (2011). Quantitative estimation of volume changes of granular materials during silo flow using X-ray tomography, Chemical Engineering and Processing, 50, 59 - 67
  • [5] Jenike, A.W. (2012). Silos, Bins, Hoppers, http://www.jenike.com/Services/Engineering/Fun\discretionary{-}{}{}ctionalDesign/Silo-Hopper- Design.html
  • [6] Khambekar, J., Roger, A., Barnum, A. (2013). Jenike Johanson PRB Coal-Material Handling Challenges and Solutions, Power Engineering, 117/3
  • [7] Langston, P.A., Tuzun, U., Heyes, D.M. (1995). Discrete element simulation of internal stress and flow fields in funnel flow hoppers, Powder Technology, 85, 153-169
  • [8] Mac Developer Library, (2014). Performing Convolution Operations, https://developer.apple.com/ library/mac/documenta\discretionary{-}{}{}tion
  • [9] Martine, W., Greet, K., Pyka, G., Els, H., Annelies, V.E., Roel, H., Els, V., An, M., Elie, V., Bram, P. (2012). X-ray Computed Tomography for Non- Destructive Testing, International Conference on Industrial Computed Tomography, 13-29
  • [10] McDonald, S.A., Schneider, L.C.R., Cocks, A.C.F., Withers, P.J. (2006). Particle movement during the deep penetration of a granular material studied by X-ray microtomography, Scripta Materialia, 54, 191-196
  • [11] Ristow, G.H. (2000). Pattern Formation in Granular Materials, Springer, 162
  • [12] Russ, J.C. (2007). The Image Processing Handbook, Taylor and Francis Group, 817
  • [13] Schörner, K. (2012). Development of Methods for Scatter Artifact Correction in Industrial X-ray Cone-beam Computed Tomography, Technical University of Munchen, 131 [Phd dissertation]
  • [14] Schulze, D. (2007). Powders and Bulk Solids: Behavior, Characterization, Storage and Flow, Springer, Berlin, 512
  • [15] Schulze, D. (2008). Powders and Bulk Solids, Springer, 511
  • [16] Wilde, K., Tejchman, J., Rucka, M., Niedostatkiewicz, M. (2010). Experimental and theoretical investigations of silo music, Powder Technology, 198, 38-48
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-1b24f9d4-1f2d-44c9-87c4-a9cf0745f1ea
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.