Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | Vol. 13, no. 1 | 82--87
Tytuł artykułu

Variational iterational method in stability analysis of beams under nonconservative forces

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this paper is to demonstrate the effectiveness of VIM in the analysis of the stability of prismatic and nonprismatic (multisegmental) Euler–Bernoulli beams under static nonconservative loads. The application of VIM to the analysis of beam problems may lead to solutions which can form the basis for the evaluation of the quality of the numerical methods used in the problems. The general Lagrange multipliers for the Euler–Bernoulli beam equation are presented. The convergence of VIM for the multipliers is discussed and an exemplary solution to the problem of the stability of the multisegmental beam under nonconservative loads is presented.
Wydawca

Rocznik
Strony
82--87
Opis fizyczny
Bibliogr. 38 poz., tab., wykr.
Twórcy
autor
  • Wrocław University of Technology, Institute of Civil Engineering, Wybrzeże Stanisława Wyspiańskiego 27, 50-370 Wrocław, Poland
  • Wrocław University of Technology, Institute of Civil Engineering, Wybrzeże Stanisława Wyspiańskiego 27, 50-370 Wrocław, Poland
Bibliografia
  • [1] H. Ziegler, On the concept of elastic stability, Ingenieur Archiv 20 (1952) 49–56.
  • [2] V.V. Bolotin, Nonconservative Problems in the Theory of Elastic Stability, Pergamon Press, New York, 1963.
  • [3] H.H.E. Leipholz, Uber das statische kriterium bei nichtkon-servativen stabilitatsproblemen des elastomechanik, Ingenieur Archiv 32 (1963) 214–220.
  • [4] S. Nemat-Nasser, On the Elastic Stability Under Nonconservative Forces, University of Waterloo Press, Waterloo, Ontario, Canada, 1973.
  • [5] H.H.E. Leipholz, On conservative elastic systems of the first and second kind, Ingenieur Archiv 43 (1974) 255–271.
  • [6] W. Hauer, Stability of compressible rod subjected to non-conservative forces, Journal of Applied Mechanics 42 (1975) 887–888.
  • [7] H.H.E. Leipholz, Variational principles for non-conservative problems, Computer Methods in Applied Mechanics and Engineering 17/18 (1979) 609–617.
  • [8] M. Levinson, Application of the Galerkin and Ritz methods to non-conservative problems of elastic stability, Zeitschrift fur Angewandte Mathematik und Physik 17 (1966) 431–442.
  • [9] J. Roorda, S. Nemat-Nasser, An energy method for stability analysis of nonlinear, nonconservative systems, AIAA Journal 5 (1967) 1263–1268.
  • [10] R.S. Barsoum, Finite element method applied to the problem of stability of a non-conservative system, International Journal for Numerical Methods in Engineering 3 (1971) 63–87.
  • [11] J.H. Argyris, S.P. Symeonidis, Nonlinear finite analysis of elastic systems under nonconservative loading - natural formulation. Part I. Quasistatic problems, Computer Methods in Applied Mechanics and Engineering 26 (1981) 75–123.
  • [12] J.H. Argyris, K. Straub, S.P. Symeonidis, Nonlinear finite analysis of elastic systems under nonconservative loading – natural formulation. Part II. Dynamic problems, Computer Methods in Applied Mechanics and Engineering 28 (1981) 241–258.
  • [13] I. Elishakoff, F. Pellegrini, Application of Bessel and Lommel functions, and the undetermined multiplier Galerkin method version, for istability of non-uniform column, Journal of Sound and Vibration 115 (1987) 182–186.
  • [14] J.-H. He, Variational iteration method for delay differential equations, Communications in Nonlinear Science and Numerical Simulation 2 (1997) 235–236.
  • [15] J.-H. He, Variational iteration method - a kind of non-linear analytical technique: some examples, International Journal of Non-Linear Mechanics 34 (1999) 699–708.
  • [16] J.-H. He, Variational iteration method some recent results and new interpretations, Journal of Computational and Applied Mathematics 207 (2007) 3–17.
  • [17] J.-H. He, Variational principles for some nonlinear partial differential equations with variable coefficients, Chaos, Solitons and Fractals 19 (2004) 847–851.
  • [18] J. Lu, Variational iteration method for solving a nonlinear system of second-order boundary value problems, Computers and Mathematics with Applications 54 (2007) 1133–1138.
  • [19] A.-M. Wazwaz, The variational iteration method for solving linear and nonlinear systems of PDEs, Computers and Mathematics with Applications 54 (2007) 895–902.
  • [20] J. Lu, Variational iteration method for solving two-point boundary value problems, Journal of Computational and Applied Mathematics 207 (2007) 92–95.
  • [21] M.A. Noor, S.T. Mohyud-Din, An efficient method for fourth-order boundary value problems, Computers and Mathematics with Applications 54 (2007) 1101–1111.
  • [22] F. Geng, Y. Lin, Numerical solution of a system of fourth order boundary value problems using variational iteration method, Applied Mathematics and Computation 200 (2008) 231–241.
  • [23] L. Xu, The variational iteration method for fourth order boundary value problems, Chaos, Solitons and Fractals 39 (2009) 1386–1394.
  • [24] N.H. Sweilam, Fourth order integro-differential equations using variational iterational method, Computers and Mathematics with Applications 54 (2007) 1086–1091.
  • [25] H. Jafari, H. Hosseinzadeh, E. Salehpoor, A new approach to the gas dynamics equation: an application of the variational iteration method, Applied Mathematical Sciences 2 (2008) 2397–2400.
  • [26] S. Abbasbandy, E. Shivanian, Application of the variational iteration method for system of nonlinear Volterra’s integro-differential equations, Mathematical and Computational Applications 14 (2009) 147–158.
  • [27] S.B. Coskun, M.T. Atay, Determination of critical buckling load for elastic columns of constant and variable cross-sections using variational iteration method, Computers and Mathematics with Applications 58 (2009) 2260–2266.
  • [28] M.T. Atay, S.B. Coskun, Elastic stability of Euler columns with a continuous elastic restraint using variational iteration method, Computers and Mathematics with Applications 58 (2009) 2528–2534.
  • [29] A.S.V. Ravi Kanth, K. Aruna, He’s variational iteration method for treating nonlinear singular boundary value problems, Computers and Mathematics with Applications 60 (2010) 821–829.
  • [30] M.A. Abdou, A.A. Soliman, New applications of variational iteration method, Physica D 211 (2005) 1–8.
  • [31] A.-M. Wazwaz, The variational iteration method: a reliable analytic tool for solving linear and nonlinear wave equations, Computers and Mathematics with Applications 54 (2007) 926–932.
  • [32] J.I. Ramos, On the variational iteration method and other iterative techniques for nonlinear differential equations, Applied Mathematics and Computation 199 (2008) 39–69.
  • [33] Y. Liu, S. Gurram, The use of He’s variational iteration method for obtaining the free vibration of an Euler–Bernoulli beam, Mathematical and Computer Modelling 50 (2009) 1545–1552.
  • [34] H.H.E. Leipholz, Stability Theory. An Introduction to the Stability of Dynamic Systems and Rigid Bodies, John Wiley and Sons, Stuttgard, 1987.
  • [35] G.V. Rao, B.N. Rao, Galerkin finite element solution for the stability of cantilever columns subjected to tangential loads, AIAA Journal 13 (1975) 690–691.
  • [36] W. Glabisz, Stability of non-prismatic rods subjected to non-conservative load, Computers and Structures 46 (1993) 479–486.
  • [37] A. Marzani, F. Tornabene, E. Viola, Nonconservative stability problems via generalized differential quadrature method, Journal of Sound and Vibration 315 (2008) 176–196.
  • [38] E. Viola, A. Marzani, Crack effect on dynamic stability of beams under conservative and non-conservative forces, Engineering Fracture Mechanics 71 (2004) 699–718.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-1af649b8-7a4f-4948-bf1d-fa1575e312e6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.