Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 32, No. 4 | art. no. e152679
Tytuł artykułu

Impact of DSSCs structure modification sensitized withphenothiazine derivative on photovoltaic performance

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents the results of a study on the modification of dye-sensitized solar cells(DSSCs) using various phenothiazine derivatives, N719, and a mixture of these. The influence of the solvent used to prepare the dye solution, as well as the use of a TiO2 blocking layer, the addition of a co-adsorbent, or a mixture of dyes with N719 are presented. Characterisation of photoanodes was carried out to determine the UV-Vis absorption properties, morphology, and photovoltaic parameters of the fabricated solar cells. The use of different solvents for the preparation of dye solutions resulted in DSSCs efficiencies in the range of 1.55–7.26%. The most advantageous was using an ACN:t-BuOH mixture, which provided the best efficiency. The application of further modifications in the form of the addition of chenodeoxycholic acid (CDCA), a blocking layer, and the use of a co- sensitization process resulted in an increase in the final efficiency to a value of 8.50%.
Wydawca

Rocznik
Strony
art. no. e152679
Opis fizyczny
Bibliogr. 37 poz., rys., tab., wykr.
Twórcy
  • Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 M. Curie-Sklodowskiej Str., 41-819 Zabrze, Poland, pgnida@cmpw-pan.pl
  • Institute of Chemistry, University of Silesia, 9 Szkolna Str., 40-006 Katowice, Poland
  • Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 M. Curie-Sklodowskiej Str., 41-819 Zabrze, Poland
  • Faculty of Chemistry, Silesian University of Technology, 9 M. Strzody Str., 44-100 Gliwice, Poland
  • Centre for Organic and Nanohybrid Electronics, Silesian University of Technology, 22b Konarskiego Str., 44-100 Gliwice, Poland
  • Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 M. Curie-Sklodowskiej Str., 41-819 Zabrze, Poland
  • Institute of Chemistry, University of Silesia, 9 Szkolna Str., 40-006 Katowice, Poland
Bibliografia
  • [1] Griep, M H. et al. Development of thin-film dye-sensitized photoactive materials on ultra high molecular weight polyethylene (First-year Report). Army Research Labboratory. https://www.govinfo.gov/content/pkg/GOVPUB-D101-PURL-gpo126384/pdf/GOVPUB-D101-PURL-gpo126384.pdf (2012).
  • [2] Solak, F. K. & Irmak, E. Advances in organic photovoltaic cells: a comprehensive review of materials, technologies, and performance. RSC Adv. 13, 12244–12269 (2023). https://doi.org/10.1039/d3ra01454a
  • [3] Yahya, M., Bouziani, A., Ocak, C., Seferoğlu, Z. & Sillanpää, M. Organic/metal-organic photosensitizers for dye-sensitized solar cells (DSSC): Recent developments, new trends, and future perceptions. Dyes Pigments 192, 109227 (2021). https://doi.org/10.1016/j.dyepig.2021.109227
  • [4] Kakiage, K. et al. Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes. Chem. Commun. 51, 15894–15897 (2015). https://doi.org/10.1039/c5cc06759f
  • [5] Ye, M. et al. Recent advances in dye-sensitized solar cells: From photoanodes, sensitizers and electrolytes to counter electrodes. Mater. Today 18, 155–162 (2015). https://doi.org/10.1016/j.mattod.2014.09.001
  • [6] Song, L., Du, P., Xiong, J., Ko, F. & Cui, C. Efficiency enhancement of dye-sensitized solar cells by optimization of electrospun ZnO nanowire/nanoparticle hybrid photoanode and combined modification. Electrochim. Acta. 163, 330–337 (2015). https://doi.org/10.1016/j.electacta.2015.02.093
  • [7] Prakash, P. & Janarthanan, B. Review on the progress of light harvesting natural pigments as DSSC sensitizers with high potency. Inorg. Chem. Commun. 152, 110638 (2023). https://doi.org/10.1016/j.inoche.2023.110638
  • [8] Kim, M. H. & Kwon, Y. U. Semiconductor CdO as a blocking layer material on DSSC electrode: Mechanism and application. J. Phys. Chem. C 113, 17176–17182 (2009). https://doi.org/10.1021/jp904206a
  • [9] Nguyen, D.-T., Kurokawa, Y. & Taguchi, K. Enhancing DSSC photoanode performance by using Ni-doped TiO2 to fabricate scattering layers. J. Electron. Mater. 49, 2578–2583 (2020). https://doi.org/10.1007/s11664-020-07965-7
  • [10] Gnida, P. et al. Impact of blocking layer on DSSC performance based on new dye-indolo[3,2,1-jk]carbazole derivative and N719. Dyes Pigments 200, 110166 (2022). https://doi.org/10.1016/j.dyepig.2022.110166
  • [11] Sibiński, M. et al. Impact of blocking layers based on TiO2 and ZnO prepared via direct current reactive magnetron sputtering on DSSC solar cells. Sci. Rep. 14, 1–11 (2024). https://doi.org/10.1038/s41598-024-61512-6
  • [12] Gnida, P. et al. Impact of TiO2 nanostructures on dye-sensitized solar cells performance. Materials (Basel). 14, 13–15 (2021). https://doi.org/10.3390/ma14071633
  • [13] Zakir, O. et al. A review on TiO2 nanotubes: synthesis strategies, modifications, and applications. J. Solid State Electrochem. 27, 2289–2307 (2023). https://doi.org/10.1007/s10008-023-05538-2
  • [14] Elzarka, A., Liu, N., Hwang, I., Kamal, M. & Schmuki, P. Large-diameter TiO2 nanotubes enable wall engineering with conformal hierarchical decoration and blocking layers for enhanced efficiency in dye-sensitized solar cells (DSSC). Chem. Eur. J. 23, 12995–12999 (2017). https://doi.org/10.1002/chem.201702434
  • [15] Sasidharan, S. et al. Fine tuning of compact ZnO blocking layers for enhanced photovoltaic performance in ZnO based DSSCs: a detailed insight using β recombination, EIS, OCVD and IMVS techniques. New J. Chem. 41, 1007–1016 (2017). https://doi.org/10.1039/c6nj03098j
  • [16] Duong, T.-T., Choi, H.-J., He, Q.-J., Le, A.-T. & Yoon, S.-G. Enhancing the efficiency of dye sensitized solar cells with an SnO 2 blocking layer grown by nanocluster deposition. J. Alloys Compd. 561, 206–210 (2013). https://doi.org/10.1016/j.jallcom.2013.01.188
  • [17] Cho, T.-Y., Yoon, S.-G., Sekhon, S.-S., Kang, M.-G. & Han, C.-H. The effect of a sol-gel formed TiO2 blocking layer on the efficiency of dye-sensitized solar cells, Bull. Korean Chem. Soc. 32, 3629–3633 (2011). https://doi.org/10.5012/bkcs.2011.32.10.3629
  • [18] Park, N.-G. et al. Morphological and photoelectrochemical characterization of core-shell nanoparticle films for dye-sensitized solar cells: Zn-O type shell on SnO 2 and TiO 2 cores. Langmuir 20, 4246–4253 (2004). https://doi.org/10.1021/la036122x
  • [19] Kay, A. & Grätzel, M. Dye-sensitized core-shell nanocrystals: Improved efficiency of mesoporous tin oxide electrodes coated with a thin layer of an insulating oxide. Chem. Mater. 14, 2930–2935 (2002). https://doi.org/10.1021/cm0115968
  • [20] Prakash, G. & Subramanian, K. Interaction of pyridine π-bridge-based poly(methacrylate) dyes for the fabrication of dye-sensitized solar cells with the influence of different strength phenothiazine, fluorene and anthracene sensitizers as donor units with new anchoring mode. New J. Chem. 42, 17939–17949 (2018). https://doi.org/10.1039/c8nj04068k
  • [21] Lee, K.-M. et al. Effects of co-adsorbate and additive on the performance of dye-sensitized solar cells: A photophysical study. Sol. Energy Mater. Sol. Cells 91, 1426–1431 (2007). https://doi.org/10.1016/j.solmat.2007.03.009
  • [22] Slodek, A. et al. New benzo[h]quinolin-10-ol derivatives as co-sensitizers for DSSCs. Materials (Basel) 14, 3386 (2021). https://doi.org/10.3390/ma14123386
  • [23] Feng, Q., Wang, H., Zhou,G. & Wang, Z.-S. Effect of deoxycholic acid on performance of dye-sensitized solar cell based on black dye. Front. Optoelectron. 4, 80–86 (2011). https://doi.org/10.1007/s12200-011-0209-y
  • [24] Elangovan, K. et al. Simple phenothiazine-based sensitizers for dye-sensitized solar cells: Impact of different electron-donors on their photovoltaic performances. J. Mater. Sci. Mater. Electron. 35, 1154 (2024). https://doi.org/10.1007/s10854-024-12870-4
  • [25] Dhivya, K. S., Senthilkumar, C., Karthika, K. & Srinivasan, P. Structural, electrical, optical, and DFT studies of phenothiazine-based D–π–A frameworks for dye-sensitized solar cell applications. Struct. Chem. 24, (2024). https://doi.org/10.1007/s11224-024-02327-z
  • [26] Sekkat, Y. et al. A theoretical study on the role of the π-spacer in the thoughtful design of good light-absorbing dyes with phenothiazine for efficient dye-sensitized solar cells (DSSCs). J. Mol. Model. 30, 5 (2024). https://doi.org/10.1007/s00894-023-05783-2
  • [27] Gnida, P., Libera, M., Pająk, A. & Schab-Balcerzak, E. Examination of the effect of selected factors on the photovoltaic response of dye-sensitized solar cells. Energy Fuels 34, 14344–14355 (2020). https://doi.org/10.1021/acs.energyfuels.0c02188
  • [28] Luo, J. et al. Co-sensitization of dithiafulvenyl-phenothiazine based organic dyes with N719 for efficient dye-sensitized solar cells. Electrochim. Acta 211, 364–374 (2016). https://doi.org/10.1016/j.electacta.2016.05.175
  • [29] Wang, X. Enhanced performance of dye-sensitized solar cells based on a dual anchored diphenylpyranylidene dye and N719 co-sensitization. J. Mol. Struct. 1206, 127694 (2020). https://doi.org/10.1016/j.molstruc.2020.127694
  • [30] Cole, J. M., Pepe, G., Al Bahri, O. K. & Cooper, B. C. Cosensitization in dye-sensitized solar cells. Chem. Rev. 119, 7279–7327 (2019). https://doi.org/10.1021/acs.chemrev.8b00632
  • [31] Job, F., Mathew, S., Meyer, T. & Narbey, S. Studies on the performance and stability of dye-sensitized solar cells based on the co-sensitization of N719 and RK1 dye-sensitizers. Optik (Stuttgart) 292, 171215 (2023). https://doi.org/10.1016/j.ijleo.2023.171215
  • [32] Slodek, A. et al. Investigations of new phenothiazine-based compounds for dye-sensitized solar cells with theoretical insight. Materials (Basel) 13, 2292 (2020). https://doi.org/10.3390/ma13102292
  • [33] Slodek, A. et al. Dyes based on the D/A-acetylene linker-phenothiazine system for developing efficient dye-sensitized solar cells. J. Mater. Chem. C 7, 5830–5840 (2019). https://doi.org/10.1039/c9tc01727e
  • [34] Zimosz, S. et al. New D-π-D-π-A systems based on phenothiazine derivatives with imidazole structures for photovoltaics. J. Phys. Chem. C 126, 8986–8999 (2022). https://doi.org/10.1021/acs.jpcc.2c01697
  • [35] Wu, H. et al. Low-energy-gap organic photosensitizers with phenalenothiophene and benzoindenothiophene as primary electron-donors for durable dye-sensitized solar cells. J. Power Sources 451, 227748 (2020). https://doi.org/10.1016/j.jpowsour.2020.227748
  • [36] Ahmed, M. I. Effect of changing solvents on absorbance, optical energy gaps and efficiency for zinc oxide and rose bengal dye solar cells. Int. J. Innov. Sci. Eng. Technol. 6, 77–85 (2019).
  • [37] Consiglio, G., Gorcyński, A., Petralia, S. & Forte, G. Predicting the dye-sensitized solar cell performance of novel linear carbon chain-based dyes: insights from DFT simulations. Dalton Trans. 52, 15995–16004, (2023). https://doi.org/10.1039/d3dt01856c
Uwagi
Part of the research was co-financed by the NCN OPUS-21 project no. 2021/41/B/ST5/03221.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-1aa132df-5946-43b0-bd09-0f01f1803e51
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.