Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2020 | Vol. 40, no. 2 | 815--835
Tytuł artykułu

An automated computer-aided diagnosis system for classification of MR images using texture features and gbest-guided gravitational search algorithm

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The segmentation and classification of brain magnetic resonance (MR) images are the crucial and challenging task for radiologists. The conventional methods for analyzing brain images are time-consuming and ineffective in decision-making. Thus, to overcome these limita-tions, this work proposes an automated and robust computer-aided diagnosis (CAD) system for accurate classification of normal and abnormal brain MR images. The proposed CAD system has the ability to assist the radiologists for diagnosis of brain MR images at an early stage of abnormality. Here, to improve the quality of images before their segmentation, contrast limited adaptive histogram equalization (CLAHE) is employed. The segmentation of the region of interest is obtained using the multilevel Otsu's thresholding algorithm. In addition, the proposed system selects the most significant and relevant features from the texture and multiresolution features. The multiresolution features are extracted using discrete wavelet transform (DWT), stationary wavelet transform (SWT), and fast discrete curvelet transform (FDCT). Moreover, the Tamura and local binary pattern (LBP) are used to extract the texture features from the images. These features are used to classify the brain MR images using feedforward neural network (FNN) classifier, where different meta-heuristic optimization algorithms, e.g., genetic algorithm (GA), particle swarm optimization (PSO), gravitational search algorithm (GSA), and gbest-guided gravitational search algorithm (GG-GSA) are employed for optimizing the weights and biases of FNN. The extensive experimen-tal results on DS-195, DS-180, and three standard datasets show that the classification accuracy of GG-GSA based FNN classifier outperforms all mentioned meta-heuristic-based classifiers and several state-of-the-art methods.
Wydawca

Rocznik
Strony
815--835
Opis fizyczny
Bibliogr. 70 poz., rys., tab., wykr.
Twórcy
  • Department of ICT, ABV-Indian Institute of Information Technology and Management, Gwalior 474015, Madhya Pradesh, India, ravis@iiitm.ac.in
  • Department of ICT, ABV-Indian Institute of Information Technology and Management, Gwalior, Madhya Pradesh
Bibliografia
  • [1] Shanthakumar P, Ganeshkumar P. Performance analysis of classifier for brain tumor detection and diagnosis. Comput Electr Eng 2015;45:302–11.
  • [2] Dey N, Rajinikanth V, Shi F, Tavares JMR, Moraru L, Karthik KA, et al. Social-group-optimization based tumor evaluation tool for clinical brain MRI of Flair/DW modality. Biocybern Biomed Eng 2019;39(3):843–56.
  • [3] Wang H, Ahmed SN, Mandal M. Computer-aided detection of mesial temporal sclerosis based on hippocampus and cerebrospinal fluid features in MR images. Biocybern Biomed Eng 2019;39(1):122–32.
  • [4] Menze BH, Jakab A, Bauer S, Kalpathy-Cramer J, Farahani K, Kirby J, et al. The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans Med Imaging 2014;34(10):1993–2024.
  • [5] Li J, Wu Y, Shen N, Zhang J, Chen E, Sun J, et al. A fully automatic computer-aided diagnosis system for hepatocellular carcinoma using convolutional neural networks. Biocybern Biomed Eng 2020;40(1):238–48.
  • [6] Saritha M, Joseph KP, Mathew AT. Classification of MRI brain images using combined wavelet entropy based spider web plots and probabilistic neural network. Pattern Recognit Lett 2013;34(16):2151–6.
  • [7] Zhang Y, Dong Z, Wu L, Wang S. A hybrid method for MRI brain image classification. Expert Syst Appl 2011;38 (8):10049–53.
  • [8] Zhang Y, Wang S, Ji G, Dong Z. An MR brain images classifier system via particle swarm optimization and kernel support vector machine. Sci World J 2013.
  • [9] Demirhan A, Törü M, Güler I. Segmentation of tumor and edema along with healthy tissues of brain using wavelets and neural networks. IEEE J Biomed Health Inform 2014;19 (4):1451–8.
  • [10] Dixit R, Naskar R, Mishra S. Blur-invariant copy-move forgery detection technique with improved detection accuracy utilising SWT-SVD. IET Image Process 2017;11 (5):301–9.
  • [11] Maitra M, Chatterjee A. A slantlet transform based intelligent system for magnetic resonance brain image classification. Biomed Signal Process Control 2006;1(4):299–306.
  • [12] Das S, Chowdhury M, Kundu MK. Brain MR image classification using multiscale geometric analysis of ripplet. Prog Electromagn Res 2013;137:1–17.
  • [13] Zhang Y, Dong Z, Wang S, Ji G, Yang J. Preclinical diagnosis of magnetic resonance (MR) brain images via discrete wavelet packet transform with Tsallis entropy and generalized eigenvalue proximal support vector machine (GEPSVM). Entropy 2015;17(4):1795–813.
  • [14] Tamura H, Mori S, Yamawaki T. Textural features corresponding to visual perception. IEEE Trans Syst Man Cybern 1978;8(6):460–73.
  • [15] Gupta N, Khanna P. A non-invasive and adaptive CAD system to detect brain tumor from T2-weighted MRIs using customized Otsu's thresholding with prominent features and supervised learning. Signal Process: Image Commun 2017;59:18–26.
  • [16] Ojala T, Pietikä inen M, Mäenpää T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell 2002;24 (7):971–87.
  • [17] Ojala T, Pietikä inen M, Harwood D. A comparative study of texture measures with classification based on featured distributions. Pattern Recogn 1996;29(1):51–9.
  • [18] He D-C, Wang L. Texture unit, texture spectrum, and texture analysis. IEEE Trans Geosci Remote Sens 1990;28 (4):509–12.
  • [19] Guo Z, Zhang L, Zhang D. A completed modeling of local binary pattern operator for texture classification. IEEE Trans Image Process 2010;19(6):1657–63.
  • [20] Mäenpää T, Pietikä inen M. Texture analysis with local binary patterns. Handbook of pattern recognition and computer vision 2005;197–216.
  • [21] Park S, Kim B, Lee J, Goo JM, Shin Y-G. GGO nodule volume-preserving nonrigid lung registration using GLCM texture analysis. IEEE Trans Biomed Eng 2011;58(10):2885–94.
  • [22] Anaraki AK, Ayati M, Kazemi F. Magnetic resonance imaging-based brain tumor grades classification and grading via convolutional neural networks and genetic algorithms. Biocybern Biomed Eng 2019;39(1):63–74.
  • [23] Holland JH. Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. MIT Press; 1992.
  • [24] Goldberg DE, Holland JH. Genetic algorithms and machine learning. Mach Learn 1988;3(2):95–9.
  • [25] Abd-El-Wahed W, Mousa A, El-Shorbagy M. Integrating particle swarm optimization with genetic algorithms for solving nonlinear optimization problems. J Comput Appl Math 2011;235(5):1446–53.
  • [26] Pham M-T, Zhang D, Koh CS. Multi-guider and cross-searching approach in multi-objective particle swarm optimization for electromagnetic problems. IEEE Trans Magn 2012;48(2):539–42.
  • [27] Mirjalili S, Dong JS, Lewis A. Nature-inspired optimizers: theories, literature reviews and applications. Springer; 2020.
  • [28] Rashedi E, Nezamabadi-Pour H, Saryazdi S. GSA: a gravitational search algorithm. Inf Sci 2009;179(13):2232–48.
  • [29] Sarafrazi S, Nezamabadi-Pour H, Saryazdi S. Disruption: a new operator in gravitational search algorithm. Sci Iran 2011;18(3):539–48.
  • [30] Shaw B, Mukherjee V, Ghoshal S. Solution of reactive power dispatch of power systems by an opposition-based gravitational search algorithm. Int J Electr Power Energy Syst 2014;55:29–40.
  • [31] Mirjalili S, Lewis A. Adaptive gbest-guided gravitational search algorithm. Neural Comput Appl 2014;25(7–8):1569–84.
  • [32] Jayaprakasam S, Rahim SKA, Leow CY. PSOGSA-Explore: a new hybrid metaheuristic approach for beampattern optimization in collaborative beamforming. Appl Soft Comput 2015;30:229–37.
  • [33] Sun G, Zhang A, Wang Z, Yao Y, Ma J, Couples GD. Locally informed gravitational search algorithm. Knowl Based Syst 2016;104:134–44.
  • [34] Darzi S, Kiong TS, Islam MT, Soleymanpour HR, Kibria S. A memory-based gravitational search algorithm for enhancing minimum variance distortionless response beamforming. Appl Soft Comput 2016;47:103–18.
  • [35] Jiao K, Pan Z. A novel method for image segmentation based on simplified pulse coupled neural network and gbest led gravitational search algorithm. IEEE Access 2019;7:21310–3.
  • [36] Bohat VK, Arya K. An effective gbest-guided gravitational search algorithm for real-parameter optimization and its application in training of feedforward neural networks. Knowl Based Syst 2018;143:192–207.
  • [37] Shanker R, Bhattacharya M. Brain tumor segmentation of normal and lesion tissues using hybrid clustering and hierarchical centroid shape descriptor. Comput Methods Biomech Biomed Eng: Imaging Vis 2019;7(5–6):676–89.
  • [38] Boudraa A-O, Dehak SMR, Zhu Y-M, Pachai C, Bao Y-G, Grimaud J. Automated segmentation of multiple sclerosis lesions in multispectral MR imaging using fuzzy clustering. Comput Biol Med 2000;30(1):23–40.
  • [39] Wang H, Fei B. A modified fuzzy C-means classification method using a multiscale diffusion filtering scheme. Med Image Anal 2009;13(2):193–202.
  • [40] Chaplot S, Patnaik L, Jagannathan N. Classification of magnetic resonance brain images using wavelets as input to support vector machine and neural network. Biomed Signal Process Control 2006;1(1):86–92.
  • [41] El-Dahshan E-SA, Hosny T, Salem A-BM. Hybrid intelligent techniques for MRI brain images classification. Digit Signal Process 2010;20(2):433–41.
  • [42] El-Dahshan E-SA, Mohsen HM, Revett K, Salem A-BM. Computer-aided diagnosis of human brain tumor through MRI: a survey and a new algorithm. Expert Syst Appl 2014;41(11):5526–45.
  • [43] Zulpe N, Pawar V. Glcm textural features for brain tumor classification. Int J Comput Sci Issues 2012;9(3):354.
  • [44] Zhang Y-D, Wu L. An MR brain images classifier via principal component analysis and kernel support vector machine. Prog Electromagn Res 2012;130:369–88.
  • [45] Gupta N, Khanna P. A fast and efficient computer aided diagnostic system to detect tumor from brain magnetic resonance imaging. Int J Imaging Syst Technol 2015;25 (2):123–30.
  • [46] Sachdeva J, Kumar V, Gupta I, Khandelwal N, Ahuja CK. Segmentation, feature extraction, and multiclass brain tumor classification. J Digit Imaging 2013;26(6):1141–50.
  • [47] Sachdeva J, Kumar V, Gupta I, Khandelwal N, Ahuja CK. A package-SFERCB-‘‘segmentation, feature extraction, reduction and classification analysis by both SVM and ANN for brain tumors’’. Appl Soft Comput 2016;47:151–67.
  • [48] Nabizadeh N, Kubat M. Brain tumors detection and segmentation in MR images: Gabor wavelet vs. statistical features. Comput Electr Eng 2015;45:286–301.
  • [49] Zhou X, Wang S, Xu W, Ji G, Phillips P, Sun P, et al. Detection of pathological brain in MRI scanning based on wavelet-entropy and naive Bayes classifier. International Conference on Bioinformatics and Biomedical Engineering 2015;201–9.
  • [50] Ilunga-Mbuyamba E, Avina-Cervantes JG, Lindner D, Guerrero-Turrubiates J, Chalopin C. Automatic brain tumor tissue detection based on hierarchical centroid shape descriptor in Tl-weighted MR images. 2016 International Conference on Electronics, Communications and Computers (CONIELECOMP); 2016. pp. 62–7.
  • [51] Subashini MM, Sahoo SK, Sunil V, Easwaran S. A non-invasive methodology for the grade identification of astrocytoma using image processing and artificial intelligence techniques. Expert Syst Appl 2016;43:186–96.
  • [52] Zhang Y-D, Zhao G, Sun J, Wu X, Wang Z-H, Liu H-M, et al. Smart pathological brain detection by synthetic minority oversampling technique, extreme learning machine, and Jaya algorithm. Multimedia Tools and Applications 2018;77 (17):22629–48.
  • [53] Wang S, Du S, Atangana A, Liu A, Lu Z. Application of stationary wavelet entropy in pathological brain detection. Multimed Tools Appl 2018;77(3):3701–14.
  • [54] Nayak DR, Dash R, Majhi B. Discrete ripplet-II transform and modified PSO based improved evolutionary extreme learning machine for pathological brain detection. Neurocomputing 2018;282:232–47.
  • [55] Nayak DR, Dash R, Chang X, Majhi B, Bakshi S. Automated diagnosis of pathological brain using fast curvelet entropy features. IEEE Trans Sustain Comput 2018.
  • [56] Nayak DR, Dash R, Majhi B, Zhang Y. A hybrid regularized extreme learning machine for automated detection of pathological brain. Biocybern Biomed Eng 2019;39(3):880–92.
  • [57] Scarpace L, Mikkelsen L, Cha T, Rao S, Tekchandani S, Gutman S, et al. Radiology data from the cancer genome atlas glioblastoma multiforme [TCGA-GBM] collection. Cancer Imaging Arch 2016;144(4):1.
  • [58] Clark K, Vendt B, Smith K, Freymann J, Kirby J, Koppel P, et al. The cancer imaging archive (TCIA): maintaining and operating a public information repository. J Digit imaging 2013;26(6):1045–57.
  • [59] Cancer Genome Atlas Research Network. http://cancergenome.nih.gov/.
  • [60] Midas Platform. http://hdl.handle.net/1926/598.
  • [61] Harvard Medical School. http://med.harvard.edu/AANLIB/.
  • [62] Isa IS, Sulaiman SN, Mustapha M, Karim NKA. Automatic contrast enhancement of brain MR images using average intensity replacement based on adaptive histogram equalization (AIR-AHE). Biocybern Biomed Eng 2017;37 (1):24–34.
  • [63] Nagar S, Jain A, Singh PK, Kumar A. Pixel-wise dictionary learning based locality-constrained representation for noise robust face hallucination. Digit Signal Process 2020;99:102667.
  • [64] Pizer SM, Johnston RE, Ericksen JP, Yankaskas BC, Muller KE. Contrast-limited adaptive histogram equalization: speed and effectiveness. 1990 Proceedings of the First Conference on Visualization in Biomedical Computing IEEE 1990;337–45.
  • [65] Cheng Y, Jiao L, Cao X, Li Z. Illumination-insensitive features for face recognition. Vis Comput 2017;33(11):1483–93.
  • [66] Otsu N. A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 1979;9(1):62–6.
  • [67] Satapathy SC, Raja NSM, Rajinikanth V, Ashour AS, Dey N. Multi-level image thresholding using Otsu and chaotic bat algorithm. Neural Comput Appl 2018;29(12):1285–307.
  • [68] Candes E, Demanet L, Donoho D, Ying L. Fast discrete curvelet transforms. Multiscale Model Simul 2006;5(3):861–99.
  • [69] Nayak DR, Dash R, Majhi B, Prasad V. Automated pathological brain detection system: a fast discrete curvelet transform and probabilistic neural network based approach. Expert Syst Appl 2017;88:152–64.
  • [70] Nayak DR, Dash R, Majhi B. Brain MR image classification using two-dimensional discrete wavelet transform and AdaBoost with random forests. Neurocomputing 2016;177:188–97.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-1a9fecc0-4764-41ea-aad6-a18e66a0358c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.