Warianty tytułu
Języki publikacji
Abstrakty
This article reviews stresses caused by technological processes of concreting making an impact on void liners in reinforced concrete structures, and discusses the principles of void design. Through the application of numerical modelling, the paper considers the stress–strain status of the liners forming plastic residual voids under the loads acting in the floor slab. The authors provide a design solution to the liners forming voids.
Czasopismo
Rocznik
Tom
Strony
997--1006
Opis fizyczny
Bibliogr. 25 poz., rys.
Twórcy
autor
- Departments of Reinforced Concrete and Masonry Structures, Vilnius Gediminas Technical University, Saulėtekio ave 11, 10223 Vilnius, Lithuania, juozas.valivonis@vgtu.lt
autor
- Departments of Reinforced Concrete and Masonry Structures, Vilnius Gediminas Technical University, Saulėtekio ave 11, 10223 Vilnius, Lithuania
autor
- Departments of Reinforced Concrete and Masonry Structures, Vilnius Gediminas Technical University, Saulėtekio ave 11, 10223 Vilnius, Lithuania
autor
- Departments of Reinforced Concrete and Masonry Structures, Vilnius Gediminas Technical University, Saulėtekio ave 11, 10223 Vilnius, Lithuania
Bibliografia
- [1] M.Y. Cheng, C.S. Chen, Preliminary planning efficiency evaluation for school buildings considering the tradeoffs of moop and planning preferences, Journal of Civil Engineering and Management 20 (2) (2014) 211–222.
- [2] G. Marčiukaitis, R. Šalna, B. Jonaitis, J. Valivonis, Calculation model for steel fibre reinforced concrete punching zones of bridge superstructure and foundation slabs, The Baltic Journal of Road and Bridge Engineering 6 (3) (2011) 193–200.
- [3] G. Marčiukaitis, R. Šalna, B. Jonaitis, J. Valivonis, A model for strength and strain analysis of steel fiber reinforced concrete, Journal of Civil Engineering and Management 17 (1) (2011) 137–145.
- [4] E. Šiožinytė, J. Antuchevičienė, V. Kutut, Upgrading the old vernacular building to contemporary norms: multiple criteria approach, Journal of Civil Engineering and Management 20 (2) (2014) 291–298.
- [5] N. Gudienė, A. Banaitis, V. Podvezko, N. Banaitienė, Identification and evaluation of the critical success factors for construction projects in Lithuania: AHP approach, Journal of Civil Engineering and Management 20 (3) (2014) 350–359.
- [6] V. Haag, A. Hauser, K. Pfeffer, D. Krecov, Method and auxiliary means for producing concrete elements, particularly semi-finished concrete products and/or concrete slabs, as well as auxiliary means for producing concrete slabs, Int. Cl. E04B 1/ 16, E04B 1/00, E04G 21/00, United State patent US 2007/ 0186506 A1, Aug. 16, 2007.
- [7] K. Breuning, System and method of displacement volumes in composite members, Word Intellectual Property Organization, International patent WO 2010/076757 A9, 08.07.2010.
- [8] K. Pfeffer, D. Krecov, G. Miedzik, M. Stuecklin, Module for the production of concrete elements and displacement body for this, Int. Cl. E04C 5/00, E04C 5/07, United State patent US 2009/ 0165420 A1, Jul. 2, 2009.
- [9] G. Miedzik, M. Stucklin, Half shell element for the production of a hollow body, Int. Cl. E04G 11/06, E04G 21/12, B23P 11/00, United State patent US 2012/0311959 A1, Dec. 13, 2012.
- [10] W. Haussler, Honeycomb-structured hollow-block concrete floor, Int. Cl.7: E04B 1/18, United State patent US 2003/0110724 A1, Jun. 19, 2003.
- [11] A.F. Febra, Lost mould element for manufacturing reinforced concrete flat slabs, Int. Cl.7: E04C 3/30, United State patent US 6,789,366 B1, Sep. 14, 2004.
- [12] Il Grande Roberto, Embedment-type mould for manufacturing building slab structures, Int. Cl. E04B 5/32, Word Intellectual Property Organization, International patent WO 03/048471 A1, 12.06.2003.
- [13] F. Rebelo, N. Eduarda Fanha, A better solution for the concrete boxes normally used in the fungiform pavements, Inc. Cl.7: E04B 5/21, European Patent Office, EP 0 884 427 B1, 03.04.2002.
- [14] M. Schnellenbach-Held, K. Pfeffer, Punching behavior of biaxial hollow slabs, Cement and Concrete Composites 24 (2002) 551–556.
- [15] J.H. Chung, H.K. Chois, S.C. Lee, S.C. Choi, Shear capacity of biaxial hollow slab with donut type hollow sphere, Procedia Engineering 14 (2011) 2219–2222.
- [16] A.H. Ibrahim, N.K. Ali, W.D. Salam, Flexural capacities of reinforced concrete two-wai bubbledeck slabs of plastic spherical voids, Diyala Journal of Engineering Sciences 06 (02) (2013) 9–20.
- [17] A. Ibrahim, H. Salim, H.S. El-Din, Moment coefficients for design of waffle slabs with and without openings, Engineering Structures 33 (2011) 2644–2652.
- [18] C.C. Marais, J.M. Robberts, B.W.J. van Rensburg, Spherical void formers in concrete slabs, Journal of the South African Institution of Civil Engineering 52 (2) (2010) 2–11.
- [19] N.E. Shanmugam, M.A. Basher, K.A. Rashid, An approximate method for the ultimate shear strength of horizontally curved composite plate girders, Journal of Civil Engineering and Management 20 (3) (2014) 330–337.
- [20] J.H. Chung, J.H. Park, H.K. Choi, S.C. Lee, S.C. Choi, An Analytical Study on the Impact of Hollow Shapes in Bi- Axial Hollow Slabs, Korea Concrete Institute, 2010 ISBN: 978- 89-5708-182-2.
- [21] Rukovodstvo po raschiotu i projektirovaniju stalnych form, NIIZB, Moskva (1970) (in Russian).
- [22] TNO Diana, DIANA finite element analysis. The Netherlands, 2005.
- [23] V. Popov, T. Grigorjeva, Integrated computer – aided design of building structures, Engineering Structures and Technologies 2 (1) (2010) 31–37.
- [24] D.C. Planchard, SolidWorks 2014 Reference Guide, SDS Publications, 2014. p. 900.
- [25] P.M. Kurovski, Engineering Analysis with SolidWorks Simulation 2014, SDS Publications, 2014. p. 491.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-1a6f5994-4411-47db-afcf-cd47ba951942