Czasopismo
2018
|
R. 94, nr 5
|
163--168
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Internal Model Control based on neural networks applied for drive with elastic coupling
Języki publikacji
Abstrakty
W artykule opisano sterowanie układem napędowym z połączeniem sprężystym, pętla regulacji prędkości została zaprojektowana w oparciu o dwa modele neuronowe. Jeden z nich stanowi główny regulator, natomiast drugi jest modelem odniesienia wykorzystywanym w trakcie obliczeń. Adaptacja wag sieci neuronowych jest realizowana on-line. Artykuł zawiera opis teoretyczny zaimplementowanej struktury, a także badania symulacyjne oraz eksperymentalne zrealizowane z wykorzystaniem procesora sygnałowego karty dSPACE1103.
Paper presents control system applied for electrical drive with elastic connections. Speed control loop of the whole structure is based on two neural models. One of them is applied as the main controller, the second is the internal model of the plant used for calculations of control signal. Adaptation of weights in neural networks is done in on-line mode. Article contains theoretical description of implemented control structure, simulation tests as well as experimental tests using digital signal processor of dSPACE1103.
Czasopismo
Rocznik
Tom
Strony
163--168
Opis fizyczny
Bibliogr. 20 poz., rys.
Twórcy
autor
- Politechnika Wrocławska, Katedra Maszyn, Napędów i Pomiarów Elektrycznych, ul. Smoluchowskiego 19, 50-372 Wrocław, mateusz.zychlewicz@pwr.edu.pl
autor
- Politechnika Wrocławska, Katedra Maszyn, Napędów i Pomiarów Elektrycznych, ul. Smoluchowskiego 19, 50-372 Wrocław, piotr.derugo@pwr.edu.pl
Bibliografia
- [1] Derugo P., Szabat K., Damping of torsional vibrations of twomass system using adaptive low computational cost fuzzy PID controller, IEEE International Conference on Power Electronics and Drive Systems, (2015), 1162-1165
- [2] Serkies P., Szabat K., Predictive position control of the induction two-mass system drive, IEEE International Symposium on Industrial Electronics (ISIE), (2014), 871-876
- [3] Kaminski M., Orlowska-Kowalska T., FPGA Implementation of ADALINE-Based Speed Controller in a Two-Mass System, IEEE Transactioncs on Industrial Informatics, 9 (2013), n. 3, 1301-1311
- [4] Yousefi F., Alipour K., Tarvirdizadeh B., Hadi A., Knee Rehabilitation Robot Control by Sliding-Backstepping and Admittance Control, Artificial Intelligence and Robotics, (2017), 51-57
- [5] Nowopolski K., Wicher B., Łuczak D., Siwek P., Recursive neural network as speed controller for two-sided electrical drive with comples mechanical structure, International Conference on Methods and Models in Automation and Robotics (MMAR), (2017), 576-581
- [6] Benmabrouk Z., Abid A., Ben Hamed M., Sbita L., Speed control of DC machine using adaptive neural IMC controller based on recurrent neural network, International Conference on Systems and Control (ICSC), (2016), 198-203
- [7] Guo B., Hu L., Bai Y., PMSM servo system based on dynamic Recurrent Neural Networks PID controller, Proceedings of International Power Electronics and Motion Control Conference, 4, (2012), 2417-2421
- [8] Kamiński M., Recurrent neural controller applied for two-mass system, International Conference on Methods and Models in Automation and Robotics (MMAR), (2016), 128-133
- [9] El-Sousy F. F. M., Intelligent Optimal Recurrent Wavelet Elman Neural Network Control System for Permament-Magnet Synchronous Motor Servo Drive, IEEE Transaction on Industrial Informatics, 9, (2013), n. 4, 1986-2003
- [10] Wai R.-J., Lin F.-J., Adaptive recurrent-neural-network control for linear induction motor, IEEE Transactions on Aerospace and Electronics Systems, 37, (2001), n. 4, 1176-1192
- [11] Castaneda C., Lopez-Mancilla D., Garcia J. H., Zarate R. C., Position Control of DC Motor based on Recurrent High Order Neural Networks, IEEE International Symposium on Intelligent Control, (2010), 1515-1520
- [12] Tsai C.-H., Neural Network Application for Flux and Speed Estimation in the Sensorless Decoupling Induction Drive, IEEE International Conference on Systems, Man and Cybernetics (SMC), (2006), 5297-5303
- [13] El-Sousy F. F. M., Abuhasel K. A., Adaptive nonlinear disturbance observer using double loop self-organizing recurrent wavelet-neural-network for two-axis motion control system, IEEE Industry Applications Society Annual Meeting, (2016), 1-14
- [14] Lin F.-J., Lin C.-H., Hong C.-M. Robust control of linear synchronous motor servodrive using disturbance observer and recurrent neural network compensator, IEE Proceedings – Electric Power Applications, 147, (2000), n. 4, 263-272
- [15] Francis B., Wonham W., The internal model principle of control theory, Automatica, 12, (1976), n. 5, 457-465
- [16] D. Chao, Zhonggang Y., Yanqing Z., Xiangdong S., Jing L., Yanru Z., Decoupled Current Control of Induction Motors Drives with Internal Model Based on Active Disturbance Rejection Control Strategy, International Conference on Electrical Machines and Systems (ICEMS), 2016, 1-6
- [17] Li H.-X., Deng H., An Approximate Internal Model-Based Neural Control for Unknown Nonlinear Discrete Processes, IEEE Transactions on Neural Networks, 17, (2006), n. 3., 659-670
- [18] Pajchrowski T., Application of an Internal Model Speed Control for PMSM with variable mechanical parameters, International Conference on Cybernetics (CYBCONF), (2015), 416-421
- [19] Wróbel K., Adaptacyjne sterowanie rozmyte ze zbiorami typu II złożonego układu napędowego pracującego w zakresie prędkości niskiej, Prace Naukowe Instytutu Maszyn, Napędów i Pomiarów Elektrycznych Politechniki Wrocławskiej. Studia i Materiały, 71 (2015), nr 35, 109-117
- [20] Bona B., Indri M., Friction Compensation in Robotics: an Overview, IEEE Conference on Decision and Control, (2005), 4360–4367
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-1a4f44fe-ca0f-4a27-9526-39eae0067900