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Abstract Time series models are a popular tool commonly used to describe time-
varying phenomena. One of the most popular models is the Gaussian AR. However,
when the data have outlier observations with "large" values, Gaussian models are
not a good choice. We therefore abandon the assumption of normality of the data
distribution and propose the AR model based on the double Pareto distribution.
We introduce the estimators of the model’s parameters, obtained by the maximum
likelihood method. For this purpose, we use the Maclaurin series expansion and the
Chebyshev polynomials expansion of the likelihood function. We compare the results
with the Yule-Walker estimator in the finite variance case and with the modified
Yule-Walker estimator in the infinite variance case. The accuracy of the results
obtained was checked by Monte Carlo simulations.
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1. Introduction. Time series models are a popular tool commonly used
to model time-varying phenomena. The choice of model depends on the ap-
plication. However, the most popular is the Gaussian autoregressive moving
average model (ARMA short) [3, 4, 20, 7]. In practical applications, the most
popular is the autoregressive model (AR short), which is a special case of the
ARMA model, because of its simplicity and intuitiveness. The AR model is
due its popularity to the fact that many other models are considered as its
generalizations. One of these extensions is, for example, the AR model with
time-dependent coefficients [19]. One significant difference between the stan-
dard and time-dependent models is that the extended model is nonstationary
in a broad sense. The other interesting extension is the PAR model, in which
the parameters of the AR equation are periodic in time [6, 26, 25, 1, 8, 29]. One
can also consider the versions of the AR model in continuous time [12, 27].

Another approach to extend the classical AR model is to change the dis-
tribution of the noise. In the literature, the large class of distributions that
were investigated as noise in the AR model can be found [9, 28, 30]. Due to
the possibility of describing the data with stationary-like behavior and large
observations, the most popular model is with a—stable distributions that be-
long to the heavy-tailed class of distributions [22, 18]. However, there are
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significant problems with the statistical analysis of the AR model with the
a— stable distributed noise. For instance, lack of explicit form of the prob-
ability density function (PDF) of the a—stable distribution for almost all «
values prevents the use of PDF-based estimation techniques (e.g., maximum
likelihood method).

In this paper, instead of considering c—stable distribution in the station-
ary AR model, we introduce a model with the double Pareto distribution
[15]. According to our knowledge, this is the first paper in the literature to
provide an AR model with this noise distribution. In such a case, the model
for describing data with large observations exhibiting stationary properties is
still preserved.

In this paper, we introduce the idea of maximum likelihood estimation
(MLE short) for the AR model with a double Pareto distribution of the noise.
We investigate two cases: a model with finite and infinite variance. In the first
case, we compare our results with the classical Yule-Walker approach. In the
second case, the autocovariance function is not defined, so we compare MLE
estimators with a modification of the Yule-Walker method prepared to handle
cases with infinite variance |[11]. The general methodology of the maximum
likelihood method is based on the likelihood function of the model, which is ex-
pressed in the means of the PDF of the noise. The maximum of the likelihood
function cannot be obtained analytically in a simple way due to the compli-
cated form of the double Pareto distribution PDF. Here, similarly to [28] for
Student’s t distributed noise, we propose to approximate it by the Maclau-
rin series expansion. We also slightly modified this approach and propose an
approximation of the likelihood function by Chebyshev polynomials. These
approximations make finding the explicit formula for the parameters’ estima-
tors possible. The effectiveness of estimators obtained using this methodology
is demonstrated on the basis of Monte Carlo simulations.

The rest of the paper is organized as follows. In Section 2 we discuss the
AR model with Gaussian noise and with double Pareto noise. We indicate
the main properties of such processes. Next, in Section 3 we present how
to estimate the parameters of the AR model with the maximum likelihood
method, the Yule-Walker method and the modified Yule-Walker method. In
Section 4 we provide the computational analysis of the estimators using the
Monte Carlo method. In the last section, we present the conclusions of the

paper.

2. Autoregressive model. Autoregressive model is among the most
common time series models. This process { X} }icz is defined by the following
equation |3, 23]

Xe— 01Xy 1 — o — 0p Xy p = Zy, (1)

where {Z;}icz is the sequence of uncorrelated random variables with finite
variance and mean equal to 0, known as white noise. In the classical case,
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the distribution of {Z;};cz in (1) is assumed to be Gaussian. This is moti-
vated by the fact that, under this assumption, the estimation methods and
testing procedures are well defined and easy to calculate in explicit form.
Moreover, assumption of the Gaussian distribution is important due to the
Central Limit Theorem. However, when data are heavy-tailed distributed,
a Gaussian distribution is inappropriate, and other distributions need to be
considered. In this paper, we consider the AR model with a double Pareto
distribution, which is an extension of the Pareto distribution [2]. The explicit
form of the double Pareto distribution, PDF, enables the use of a wide range
of statistical methods. The next subsection contains a short reminder of the
basic properties of the standard AR model (1) and then we present the AR
model with the double Pareto distribution as well as its main properties.

2.1. AR models with Gaussian distribution. In the Gaussian dis-
tributed AR model, it is assumed that noise {Z;}icz in the model (1) is a
sequence of uncorrelated Gaussian distributed random variables with mean
p = 0 and variance %, 0 € Ry (N(0,0?)). Their distribution PDF is just
a PDF of the normal distribution:

(@) = —— exp <—(°””_“)2>  zER. )

2mo 202

The autoregressive polynomial of the model (1) is defined by the following
equation:

d(z)=1—r1z2—...— pp2P. (3)
There exists a stationary solution of the time series {X;}ez defined by (1)

iff for every |z| = 1 polynomial (3) is different from zero. If we additionally
assume:

Vi<t 9(2) =1—d1z— ... — ¢p2P #0, (4)

then we call the time series (1) causal. Moreover, this assumption gives us
the explicit form of the model (1) solution:

Xi =Y %, (5)
j=0

where {1;}32, is an absolute convergent sequence of constants, defined as
P(2) =272, P2l = % [3]. This assumption is needed for the convergence
of the sum (5). L? convergence is guaranteed by a finite second moment for
all Z; in the model (1).

Other examples of important properties of the AR Gaussian model are
finite moments of all order and the existence of an explicit formula of its
likelihood function. These properties make a wide range of prediction and
estimation methods possible. For instance, the maximum likelihood method
or the least squares method [3].
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2.2. AR models with double Pareto distribution. The double
Pareto distribution is a continuous probability distribution with PDF given
by following formula [15]:

W=l ifo<az< B
)94—1? lffL’Zﬁ

(6)

and CDF given by [15]:

)Y, f0<z<p
LBy (7)

—5(;) , ifx>p,

where 6 > 0, 8 > 0. This distribution has a few important properties, which

we describe below.

Moment of order p for double Pareto distributions exists only for p < 6.
This property is important because the existence of moments is an assumption
in some methods of parameter estimation. The double Pareto distribution
belongs to the domain of attraction of the a-stable distribution. Another
important property is that the tails of the double Pareto distribution exhibit
a power law behavior.

In this paper, we extend the classical definition of the AR model given in
(1) and assume that the noise {Z; };c7 is a sequence of independent identically
distributed (i.i.d.) double Pareto-distributed random variables. We consider
two cases, 6 > 2 and 0 < 2. In the first case, we can use any methods dedicated
for finite-variance distributed models. In the second case, the variance of
the noise is infinite, and dedicated algorithms need to be applied. In this
case, the assumption of a classically understood lack of correlation of the
noise sequence is impossible. However, we can assume that the noise sequence
satisfies the independence of the components of the time series {Z; }¢cz, which
is more general than lack of correlation. For any other class of heavy-tailed
distributions in the literature, this problem was also investigated; see, for
instance, |13, 10, 11]. Let us note that the preliminary investigation whether
the data comes from finite- and infinite-variance models is a significant but
challenging issue. However, there are methods dedicated to this problem. For

instance, in [24, 5| advanced techniques are proposed for testing whether the
data are from a finite-variance distribution, without the specification of the
distribution type. Moreover, in [16] the problem of discriminating the finite-

and infinite-variance models is also discussed.

Similarly to the Gaussian case, the solution of the model is given by for-
mula (5) if condition (4) is satisfied. However, when 6 < 2, the L? convergence
cannot be assumed at this time and different norms are analyzed; see, for ex-
ample, [22].

3. Estimation methodology.
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3.1. Maximum likelihood method.

The maximum likelihood method is one of the most widely used meth-
ods to estimate model parameters. Its idea is based on the maximization of
the likelihood function with respect to the estimated parameters of the given
model. The likelihood function is defined as the multidimensional PDF of the
given sample from the model. In many cases, the likelihood function might
have a sophisticated form. Therefore, finding an analytical solution to this is-
sue is very difficult or sometimes impossible. Then, numerical approximations
can be considered as a solution of the problem.

We recall that the log-likelihood function of the Gaussian AR model has
the following form [3]:

tog L(0:6) = ~ "~ Piog(am0?) — Ly S (K- 6K - 0K )% )

20
t=p+1

where ¢ = (¢1,...,0p).

To find all estimators, one just calculates derivatives with respect to all
unknown parameters and equates them all to zero. For instance, in the case
of p =1, the formula for (Z)l as follows::

&1 _ Z?:Q XtXt—l
Dimp Xio1

In the case of the considered double Pareto distributed AR(p) model, we
apply the same idea.

First, it is necessary to determine the likelihood function. Here, we assume
that the residuals are i.i.d. by a double Pareto distribution with the PDF
given by formula (6). For simplicity of notation, we take the notation A; =
(Xt =1 Xp1 — oo — pXip), B = (Xo — 1 X401 — .. — ¢p X4 — 1).
For a given sample, {X;}}; we obtain the following form of the likelihood
function:

9)

- | | M %(%)9_1, for0 < Ay <
iy (10)

L(9,8,¢) =<
Ht:p+1 2@(ﬁ)9+17 for Ay > 3,
Thus, the log-likelihood function is given by:

| - Z?:pﬂ log(%) + (0 —1)(log A; —log B8),for 0 < Ay < 3
OgL(9,6,¢) = n 0 _
Y i—pi1l08(35) + (0 + 1)(log B — log Ay), for Ay >

(
(
B {(n —p)(log# —Olog f —log2) + (0 — 1) 321, log Ay, for 0 < A, < 8
(n—p)(log + 0log 8 —log2) — (0 + 1) 37/, log Ay, for A, > .

(11)

Finding the maximum of the function (11) is a challenging issue due to the
log (X; — 1 X¢4—1 — ... — ¢pX;—p) component. Calculating any of the deriva-
tives with respect to ¢; i = 1,2,---,p leads to the equation with a sum of



126 Autoregressive model with double Pareto distributed noise

n — p elements in the form of fractions with different denominators. All de-
nominators contain parameters that are unknown and have to be estimated.
This fact causes that if we calculate derivatives with respect to unknown
parameters, which equates them all to zero, we obtain a complicated set of
equations, computationally expensive to solve. For this reason, we decided to
use two expansions of the log-likelihood function (11): the Maclarurin series
expansion and the Chebyshev polynomial expansion. We assume that the con-
dition |X; — ¢1Xp—1 — ... — $pXy—p — 1| < 1 is satisfied. If this condition is
not satisfied in practical applications, we divide the real data by a sufficiently
large number.

3.1.1. Maclaurin series expansion. Taking the first three terms of the
Maclaurin series [21] gives the following approximation of the log-likelihood
function (11):

((n—p)(logh — Olog B — log 2)+

6-1)(> Bt—% S B+

t=p+1 t=p+1

1 n
—|—§ Z Bf’), for0 < Ay <
n t=p+1
log L(0, B, ¢) ~
( ) (n—p)(log® + Glog B — log 2)+

(9+1)(Zn: Bt—% Zn: B2+

t=p+1 t=p+1

(12)

1 n
+3;B§), for A; > .

Now, it is easy to find partial derivatives with respect to the unknown pa-
rameters:

n

—1) (- (1 — 2 . .
Olog L (0,5,5{) (O =1)( t:;‘rl[Xt_j(l B, + B;)]), for0< A, <p "
9, n
" 0+ 1)(— Z [(Xi—;(1-B; + Bf)]), for A; > 8,
t=p+1
where j =1,2,....

dlog L(0,8,6) _ 0
93 3 14
op 8 (14)
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and
1
(n—p)(5 —logB) + Z B,
t=p+1
1< 1 &
. —5 > Bi+3) B),  for0<A<p
810gL(9,B,¢) — t=p+1 1=2 (15)
00 1
(n = p)(5 +logB) + Z By
t=p+1
——ZBt—k ZBt for Ay > B.
t=p+1

To find the maximum of the function (12) one has to set the partial deriva-
tives equal to zero and solve the resulting system of equations. The derivative
of the log-likelihood function of the double Pareto distribution with respect
to B is always positive, and thus the function is always positive, making it
impossible to find the maximum of the function (12) with respect to the pa-
rameter 3. However, for a fixed value of 3, it is possible to find the estimates
of ¢;,j = 1,2,...,p parameters. The formula obtained using the first two
terms of the Maclaurin expansion for p = 1 is given by:

€51 _ Z?:2 Xi1 (Xt — 2)‘
EZZ:Q)(Efl

(16)

3.1.2. Chebyshev polynomials expansion. Taking the first four Cheby-
shev polynomials of the first kind [17] gives the following approximation of
the log-likelihood function (11):

(n — p)(log @ — Olog 8 — log 2)+

n

O-1)() (1-log2)—2 > B+
t=p+1 t=p+1

8 n
+3 Y B}, for0<A<p
t=p+1

(n —p)(logh + Olog B —log2)+

n

O+1)( ) (1-1log2) -2 Zn: B2+

t=p+1 t=p+1

8 n
+3 > B}, for A >p
t=p+1

log L(6, B, ¢) ~
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Now, it is easy to find partial derivatives with respect to the unknown pa-
rameters:

n

= 0—1)(— X;_j(-4B +8B})]), for0< A; <
’ O +1)(— Y [Xe—j(—4B, +8B}))), for Ay > B,
t=p+1
where j =1,2,...,p.
dlog L(6,8,6) _ 0
98 B (19)
and
1
(n = p)(5 —log )+
+( Z (1—1log2)—2 Z B+
t=p+1 t=p+1
. +§ZBE)’ for0< A, <
dlog L(6,8,6) t=p+1 5
26 = 1 (20)
(n = p)(5 +log f)+
+( Z (1—1log2)—2 Z B} +
t=p+1 t=p+1
48 S BY), for A, > 8.
3t:p+1

To find the maximum of the function (17) one has to set the partial deriva-
tives equal to zero and solve the resulting system of equations. The derivative
of the logarithmic likelihood function of the double Pareto distribution with
respect to [ is always positive, and thus the function is always positive, mak-
ing it impossible to find the maximum of the function (17) with respect to
the parameter 3. However, for a fixed value of (3, it is possible to find the
estimates of ¢;,7 = 1,2,...,p parameters. The formula obtained using the
first three terms of the Chebyshev polynomials of the first kind for p = 1 is
given by:

Q§ _ Z?:Q X1 (X¢ —1)
' iy X7

(21)

3.2. Yule-Walker method and modified Yule-Walker method.
Considering the general AR(p) model given by(1) and assuming that it is
causal, we can establish the so-called Yule-Walker method for ¢;, j = 1,2,...
parameters estimation [3]. We note that the Yule-Walker algorithm does not
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assume any specific distribution of the residuals. The only assumption is re-
lated to their finite-variance distribution.
In the case of AR(1) model with finite variance, we obtain:

q; _ ?:_11 (Xt+1 — X) (Xt _ X)
1 — n —\2
Zt:l (Xt - X)

where X is the corresponding sample mean.

When the variance of the noise distribution is infinite, the classical Yule-
Walker approach cannot be used. However, there exist extensions of this
method, where covariance is replaced by other measures of dependence. One
of the possible approaches is to use fractional lower order covariance (FLOC),
which is described in [13]. The estimator obtained using this measure for the
AR(1) model is given by:

; (22)

_ 2o Xl | X4|° sign [X-1.X)]
Sy X [T

¢El 9 (23)

where v and ¢ are parameters that satisfy 0 < v+ 4§ < 6 in the case of double
Pareto distribution.

3.3. Estimation of ¢ and § parameters. The estimator of the 6
parameter can be determined without using the Maclaurin expansion and
has the following form with a known [ parameter [15]:

n—p

0= :
> tpi1log Ay —log 8

(24)

In our case, we estimate the model parameters multiple times for different
possible values of 5. In more detail, for each possible, § we introduce the
methodology to estimate the parameters of the AR model. Then, we calculate
the residuals from the model, and finally we check if they are double Pareto
distributed. This problem can be addressed with the theoretical cumulative
distribution function (CDF) of the double Pareto distribution by comparing
it with the empirical cumulative distribution function (ECDF) of residuals
for each selected value of 5. These two functions can be compared, e.g. by
calculating the mean square error between them.

MSE = Zn: (Fg(zi) —Fg(zi))z, (25)

i=p+1

where Fg(-) is the CDF of the double Pareto distribution (7) and Fg(-) is the
ECDF of the residuals. By {z:}}_; we mark a sequence of realizations of the
residuals of the AR(p) model. We selected a value of §, which leads to the
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lowest value of MSE (25). However, the proposed method has the disadvantage
that we cannot limit the range of parameters 8 to be considered. The number
of terms in a set should be selected following the desired precision of the £
estimator.

3.4. Estimation of the p parameter. In the previous subsection, we
assumed that the parameter p is known. Now, we investigate the problem of
how to select the optimal value of p. If the noise distribution is Gaussian, in-
formation criteria, such as the Akaike Information Criterion, Bayesian Infor-
mation Criterion or the final prediction error criterion [3] are natural choices
to solve this issue. To use the first two, the existence of a global maximum
of the likelihood function (10) is necessarily. The variance estimator is the
basis for the third one, but in our case it is not properly defined for the
infinite-variance case. Due to these reasons, the classical information criteria
are useless for the double Pareto distributed AR(p) model case.

To solve this problem, we proceed analogously to the estimation of the
B parameter. That is, for all p from a given set of possible values, we estimate
all parameters and then calculate the MSE (25) between the ECDF of residu-
als and the theoretical CDF of the double Pareto distribution. This approach
is computationally expensive, but fortunately most of the possible values of
the p parameter are relatively small.

4. Monte Carlo simulations. We check the precision of the methods
described in Section 3 to estimate the model parameters by performing Monte
Carlo simulations using the first three terms of the Maclaurin expansion and
the first four Chebyshev polynomials of the first kind. Here, we consider the
AR(1) time series with the double Pareto distribution with parameters ¢; =
0.7, B = 0.8 and # = 2.5 in the finite variance case and ¢ = 0.7, § = 0.8
and # = 1.3 in the infinite variance case. Such a selection of parameters
ensures that the model is stationary. We choose four lengths of the simulated
trajectories, namely n = 100, n = 500, n = 1000, and n = 5000. For each
case, the trajectories were simulated 1000 times to verify the efficiency of the
proposed techniques.

4.1. Finite variance case. Single trajectory of series with finite vari-
ance and n = 500 is presented in Figure 1. First, we compare the estima-
tors obtained with the Yule-Walker method, properly defined for the finite-
variance case. In Figures 3a, 3b, 3c, 3d, we see that in the finite variance
case both Maclaurin series and Chebyshev polynomials expansions tend to
underestimate the value of ¢; and in this case the Yule-Walker estimators are
significantly better.

4.2. Infinite variance case. Single trajectory of series with infinite
variance and n = 500 is presented in Figure 2. In this case, expansions of
MLE estimators outperform modified Yule-Walker algorithm, what we can
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100 20 30 400 500

Figure 2: Sample trajectory for
AR(1) with double Pareto dis-
tributed noise with infinite vari-
ance

Figure 1: Sample trajectory for
AR(1) with double Pareto dis-
tributed noise with finite variance

see in Figures 4a, 4b, 4c, 4d, so we recommend using them in infinite variance
case. We also observe that the median of the Taylor series expansion is closer
to the theoretical value of the estimated parameter; however, it clearly tends
to underestimate.

Due to the usefulness of the estimators obtained, we decided to investigate
them more in the infinite variance case. As the set of possible values of 3,
we chose a sequence from 0.6 to 1 with a step equal to 0.02. We consider
the possible p equal to 1 or 2. If we consider the higher values of p, the
computational cost will increase.

First, we tested the results of the estimation of all parameters of the
model using the Taylor series expansion. The results obtained from the es-
timates of p are as follows: for n = 100 the algorithm points 507 times to
p = 1; for n = 500 the algorithm points 509 times to p = 1; for n = 1000
the algorithm points 525 times to p = 1; for n = 5000 the algorithm points
504 times to p = 1. The results of the estimation of ¢1, 8, and 6 for the
simulated time series trajectories with p = 1 together with the estimation
results of § for all trajectory lengths are presented in Figures 5a, 5b, 5¢ and
5d, respectively, for four considered trajectory lengths. We can see that in all
cases, the actual value of the parameter 8 coincides with the median of the
parameter determined by the simulation. The parameter 6 is very close to
the median in all cases. For the theoretical value of the parameter ¢, for a
trajectory length of 100 is almost equal to the third quartile, for trajectory
lengths of 500 and 1000, the estimated parameter is between the third quar-
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tile and median determined for the simulation-calculated parameter, and for
a trajectory with length of 5000 it almost coincides with the median for the
simulation value of the parameter. For the parameters 8 and 6, we see that
the interquartile range does not change with increasing trajectory length. For
¢1, we see that the interquartile range decreases with increasing n. Thus, the
results are acceptable. Table 1 shows the results of the estimation of param-
eters ¢1 and ¢9 as in the Definition 1 of the AR(p) model for p = 2 for the
data generated from the AR(1) process. We treated the data as if they were
from the AR(2) process to validate the estimation of the parameter p, that is,
we expected that the median simulation value of the parameter ¢o was close
to 0. For each n, we observe that the median of the simulation-determined
<Z;1 is close to 0.7. For this estimator, we also observe that the interquartile
decreases with increasing n. The median q52 determined from the simulation
is close to 0 and approaches it as n increases. In contrast, its interquartile
range decreases with increasing n and already for n = 5000 it reaches a very
small value. For both estimators, we see that the mean square error between
the theoretical and simulation values is small for all values of n.

n [ 1 [ 62| med(d) | med(ds) [IQR; | I1QR; | MSE; [ MSE,
100 [07] 0] 0662 [—-7771-10"6] 0.693 |2.929-10-¢| 0.155 | 0.421
500 |0.7] 0 | 0.693 | —8.341-10~7 | 0.025 | 2.929-10° | 0.090 | 0.465
1000 | 0.7 | 0 | 0.697 | —1.949-107 | 0.012 | 7.123-107 | 0.066 | 0.476
5000 | 0.7 | 0 | 0.700 | —7.169-10~" | 0.004 | 2.685-10—° | 0.049 | 0.487

Table 1: Table with median, interquartile range and mean squared error for
estimates: ¢ and ¢, using the Taylor series approximation for the AR (2)
model with double Pareto distributed noise with infinite variance for data
sampled from the AR (1) model with double Pareto distributed noise with
infinite variance for trajectories lengths: 100, 500, 1000 and 5000

Secondly, we test results of the estimation of all parameters of the model
using Chebyshev polynomials of the first kind expansion. The results obtained
from the estimates of p are as follows: for n = 100 the algorithm points
522 times to p = 1; for n = 500 the algorithm points 525 times to p = 1;
for n = 1000 the algorithm points 502 times to p = 1; for n = 5000 the
algorithm points 512 times to p = 1. The results of parameter estimation ¢,
B, and 6 for the simulated time series trajectories with p = 1 along with the
estimation results of § for all trajectories are presented in Figures 6a, 6b, 6¢
and 6d, respectively, for four considered trajectory lengths. We can see that
in all cases, the actual value of the parameter S coincides with the median
of the parameter determined by the simulation. The parameter 6 is very
close to the median in all cases. For the theoretical value of the parameter
¢1 for a trajectory length of 100 the estimated parameter is between the
third quartile and median for trajectory lengths of 500, 1000 and 5000, the
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estimated parameter is between the first quartile and median determined for
the simulation-calculated parameter. For the parameters § and 6, we see that
the interquartile range does not change with increasing trajectory length. For
¢1, we see that the interquartile range decreases with increasing n. Thus,
the results are acceptable. Table 2 shows the results of the estimation of
parameters ¢; and ¢ as in the Definition 1 of the AR(p) model for p = 2 for
the data generated from the AR(1) process. We treated the data as if they
were from the AR(2) process to validate the estimation of the parameter p,
that is, we expected that the median simulation value of the parameter ¢o
was close to 0. For each n, we observe that the median of the simulation-
determined gZ;l is close to 0.7. For this estimator, we also observe that the
interquartile decreases with an increase of n. The median qgg determined from
the simulation is close to 0 and approaches it as n increases. In contrast, its
interquartile range decreases with increasing n and already for n = 5000 it
reaches a very small value. For both estimators, we see that the mean square
error between the theoretical and simulation values is small for all values of n.

n | ¢1 | g2 | med(dr) | med(ds) | IQR; | IQR; | MSE; | MSE,
100 | 0.7] 0| 0692 | —4.152-1076 | 0.710 | 1.790-107° | 0.134 | 0.427
500 | 0.7 0 | 0701 | —3.666-10~7 | 0.019 | 1.256-10° | 0.077 | 0.465
1000 | 0.7 | 0 | 0702 | —9.125-107° | 0.012 | 3.463-107 | 0.061 | 0.476
5000 | 0.7 | 0 | 0.701 | —3.736-107 | 0.005 | 1.450-10° | 0.051 | 0.485

Table 2: Table with median, interquartile range and mean squared error for
estimates: (51 and q§2 using the Chebyshev polynomials approximation for the
AR(2) model with double Pareto distributed noise with infinite variance for
data sampled from the AR(1) model with double Pareto distributed noise
with infinite variance for trajectories lengths: 100, 500, 1000 and 5000

5. Conclusions. In this paper, we have considered the AR model with
double Pareto distribution. This model can be useful for modeling data with
stationary-like behavior but with large observations. We propose here the
maximum likelihood-based approach to estimate the model’s parameters. For
the double Pareto distribution, the PDF is given in explicit form; however, it
is expressed by means of complicated and special functions. Thus, it is impos-
sible to find the explicit formula for the parameters’ estimators. However, the
application of the Maclaurin series expansion and Chebyshev polynomials ex-
pansion gives the possibility of obtaining exact formulas for the estimated pa-
rameters. We compare the obtained estimators with the Yule-Walker method
in the finite variance case and with the modified Yule-Walker method in the
infinite variance case. In the first case, the Yule-Walker method gives better
results; however, when the variance is infinite, the proposed estimators per-
form better. Using the Monte Carlo method, we demonstrate the effectiveness
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of the proposed estimators.
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Appendices
A. Suplementary figures.

A.1. Estimates of ¢; for the AR(1) model I. The Figures 3 show
boxplots of comparison of estimates ¢; for the AR(1) model with double
Pareto distributed noise with finite variance using the Taylor series approxi-
mation for the MLE, Chebyshev polynomials of the first kind approximation
for the MLE, and the Yule-Walker method.
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(¢) Trajectory length: n = 1000; (d) Trajectory length: n = 5000;

Figure 3: The theoretical value of the parameter: ¢; = 0.7.
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A.2. Estimates of ¢, for the AR(1) model II. The figure 4 boxplots
of comparison of estimates ¢; for AR(1) model with double Pareto distributed
noise with infinite variance using the Taylor series approximation of the MLE,

Chebyshev polynomials of the first kind approximation for the MLE and the
modified Yule-Walker method.
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Figure 4: The theoretical value of the parameter: ¢; = 0.7.
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A.3. Estimates of ¢; for the AR(1) model III. The figure 5 box-
plots of the estimates ¢1, 5 and 6 for the AR(1) model with double Pareto
distributed noise with infinite variance using Taylor series approximation.
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Figure 5: The theoretical values of parameters: ¢; = 0.7, 3 = 0.8 and 6§ = 1.3.
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A.4. Estimates of ¢; for the AR(1) model IV. The figure 6 the box-
plots of the estimates ¢1, 5 and 6 for the AR(1) model with double Pareto
distributed noise with infinite variance using the Chebyshev polynomials ap-
proximation.
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Figure 6: The theoretical values of parameters: ¢; = 0.7, 3 = 0.8 and § = 1.3.



H. Woszczek, A. Wytomariska 141

Model autoregresyjny z szumem o podwdjnym rozkladzie Pareto
Hubert Woszczek, Agnieszka Wytomariska

Streszczenie Modele szeregéw czasowych to popularne narzedzie powszechnie sto-
sowane do modelowania zjawisk zmiennych w czasie. Najpopularniejszym modelem
jest gaussowski model AR, ktory jest stacjonarny. Jednak gdy w danych wystepuja
obserwacje odstajace o ,,duzych® wartosciach, modele gaussowskie nie sa odpowied-
nim narzedziem do ich modelowania. Odchodzimy zatem od zalozenia o normalnosci
rozkladu danych i proponujemy model AR oparty na podwdjnym rozkladzie Pareto.
Przedstawiamy estymatory parametréw modelu, uzyskane metoda najwiekszej wia-
rogodnosci. W tym celu wykorzystujemy rozwiniecie funkcji warogodnosci w szereg
Maclaurina oraz rozwiniecie za pomoca wielomianéw Czebyszewa. Wyniki porow-
naliSmy z estymatorem Yule-Walkera w przypadku o skonczonej wariancji oraz ze
zmodyfikowanym estymatorem Yule-Walkera w przypadku nieskonczonej wariancji.
Poprwano$¢ otrzymanych wynikéw zostata sprawdzona za pomoca symulacji Monte
Carlo.

Klasyfikacja tematyczna AMS (2010): 60E05; 60G10.

Stowa kluczowe: model autoregresyjny, podwéjny rozkltad Pareto, symulacje MC.

Hubert Woszczek is MSc student of Applied Mathemat-
ics at Wroclaw University of Science and Technology
(WUST). He received BCs degree in Applied Mathemat-
ics in 2023. His area of interests relates to time series
analysis and stochastic processes.

Agnieszka Wytomariska is a Professor of Wroclaw University
of Science and Technology (WUST) at the Faculty of Pure
and Applied Mathematics and a member of the Hugo Stein-
haus Center for Stochastic Processes. Her area of interest re-
lates to time series analysis, stochastic modeling and statisti-
cal analysis of real data. She is the author of more than 100
research papers in the area of the applied and industrial math-
ematics. She cooperates with industrial companies, especially
the mining industry. References to her research papers can be
found in zbMath under ai:wylomanska.agnieszka and in MathSciNet under ID:
738846.

HuBERT WO0SZCZEK

WRrocraw UNIVERSITY OF SCIENCE AND TECHNOLOGY
WYBRZEZE WYSPIANSKIEGO 27, 50-370 WRocLAaw, PoLAND
E-mail: 265722@student . pwr.edu.pl

AcNIESZKA WYLOMANSKA

Facurry oF PURE AND APPLIED MATHEMATICS,
WRocraw UNIVERSITY OF SCIENCE AND TECHNOLOGY,
WYBRZEZE WYSPIANSKIEGO 27, WRocraw 50-370
E-mail: Agnieszka.Wylomanska@pwr.edu.pl

Communicated by: Krzysztof Szajowski

(Received: 23rd of February 2023; revised: 20th of June 2023)


http://wydawnictwa.ptm.org.pl/index.php/matematyka-stosowana/article/viewArticle/7155
https://zbmath.org/authors/?q=ai:wylomanska.agnieszka
http://www.ams.org/mathscinet/search/author.html?mrauthid=738846
http://www.ams.org/mathscinet/search/author.html?mrauthid=738846
https://orcid.org/0009-0006-2911-453X
https://orcid.org/0000-0001-9750-1351

