Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2022 | Vol. 22, no. 3 | art. no. e110
Tytuł artykułu

Experimental study and statistical analysis of bending titanium alloy sheet with continuous wave fiber laser

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper represents the study of the bending behavior of sheets made of titanium alloy (Ti-6Al-4V) by irradiating with the continuous waveform fiber laser with maximum power capacity of 400 W. For this research, the impacts of various input parameters i.e., as laser scanning speed, laser power, and diameter of laser beam, on bending of Ti6Al4V sheet were taken into consideration. The effects on the bending angle by various parameters were investigated. All the experiments were conducted on 1 mm thick Ti6Al4V sheet. Microscopic analysis was also performed to observe the microstructural changes in the bend region of titanium sheet with increase in energy density of laser system. Laser scanning speed, laser power, and spot diameter of laser beam showed a significant amount of contribution in bending of titanium alloy sheet. Bending angle was found to increase with increase in energy density up to threshold level while it was found to decrease with increase in spot diameter and spot diameter. Fiber laser power and laser scanning speed were the most influential input parameters in deciding the amount of bending angle using statistical tools like Principal component analysis (PCA) and ANOVA. On successful application of Response surface methodology (RSM), laser power of 50.573 W and scanning speed of 108.242 mm/min were found to be optimum values for significant bend angle.
Wydawca

Rocznik
Strony
art. no. e110
Opis fizyczny
Bibliogr. 30 poz., rys., tab., wykr.
Twórcy
  • Department of Production & Industrial Engineering, BIT Sindri, Dhanbad, Jharkhand 828123, India, manowar.bit07@gmail.com
autor
  • Department of Engineering Technology, Mississippi Valley State University, Itta Bena, MS 38941, USA
  • Center for Materials and Manufacturing, Department of Mechanical Engineering, SR University, Warangal, Telangana 506371, India
  • Department of Metallurgical Engineering, BIT Sindri, Dhanbad, Jharkhand 828123, India
autor
  • Department of Mechanical Engineering, IIT (ISM) Dhanbad, Jharkhand 826004, India
Bibliografia
  • 1. Steen WM, Mazumder J. Laser material processing. springer science & business media; 2010.
  • 2. Bhuyan M, Kant R, Joshi SN. Experimental investigation on laser bending of metal sheets using parabolic irradiations. In International & 26th All India Manufacturing Technology, Design and Research Conference (AIMTDR) 2014 pp.12-14.
  • 3. Gisario A, Mehrpouya M, Venettacci S, Barletta M. Laser-assisted bending of Titanium Grade-2 sheets: experimental analysis and numerical simulation. Opt Lasers Eng. 2017. https:// doi.org/10.1016/j.optlaseng.2016.09.004.
  • 4. Chen DJ, Wu SC, Li MQ. Studies on laser forming of Ti-6Al-4V alloy sheet. J Mater Process Technol. 2004. https://doi.org/10.1016/j.jmatprotec.2004.02.058.
  • 5. Arnet H, Vollertsen F. Extending laser bending for the generation of convex shapes. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture. 1995; 10.1243%2FPIME_PROC_1995_209_107_02.
  • 6. Magee J, Watkins KG, Steen WM, Calder NJ, Sidhu J, Kirby J. Laser bending of high strength alloys. J Laser Appl. 1998. https://doi.org/10.2351/1.521844.
  • 7. Majumdar JD, Nath AK, Manna I. Studies on laser bending of stainless steel. Mater Sci Eng, A. 2004. https://doi.org/10.1016/j.msea.2004.06.009.
  • 8. Wang XF, Takacs J, Krallics G, Szilagyi A, Markovits T. Research on the thermo-physical process of laser bending. J Mater Process Technol. 2002. https://doi.org/10.1016/S0924-0136(02)00428-4.
  • 9. Guglielmotti A, Quadrini F, Squeo EA, Tagliaferri V. Laser bending of aluminum foam sandwich panels. Adv Eng Mater. 2009. https://doi.org/10.1002/adem.200900111.
  • 10. Chan KC, Yau CL, Lee WB. Laser bending of thin stainless steel sheets. J Laser Appl. 2000. https://doi.org/10.2351/1.521911.
  • 11. Liu J, Sun S, Guan Y, Ji Z. Experimental study on negative laser bending process of steel foils. Opt Lasers Eng. 2010. https://doi.org/10.1016/j.optlaseng.2009.07.019.
  • 12. Maji K, Pratihar DK, Nath AK. Experimental investigations and statistical analysis of pulsed laser bending of AISI 304 stainless steel sheet. Opt Laser Technol. 2013. https://doi.org/10.1016/j.optlastec.2012.12.006.
  • 13. Hoseinpour Gollo M, Moslemi Naeini H, Liaghat GH, Torkamany MJ, Jelvani S, Panahizade V. An experimental study of sheet metal bending by pulsed Nd: YAG laser with DOE method. IntJ Mater Form. 2008. https://doi.org/10.1007/s12289-008-0010-7.
  • 14. Zahrani EG, Marasi A. Experimental investigation of edge effect and longitudinal distortion in laser bending process. Opt Laser Technol. 2013. https://doi.org/10.1016/j.optlastec.2012.06.031.
  • 15. Pence C, Ding H, Shen N, Ding H. Experimental analysis of sheet metal micro-bending using a nanosecond-pulsed laser. Int J Adv Manuf Technol. 2013. https://doi.org/10.1007/s00170-013-5032-8.
  • 16. Hussain M, Mandal V, Kumar V, Das AK, Ghosh SK. Development of TiN particulates reinforced SS316 based metal matrix composite by direct metal laser sintering technique and its characterization. Opt Laser Technol. 2017. https://doi.org/10.1016/j.optlastec.2017.06.006.
  • 17. Misra S, Hussain M, Gupta A, Kumar V, Kumar S, Das AK. Fabrication and characteristic evaluation of direct metal laser sintered SiC particulate reinforced Ti6Al4V metal matrix composites. J Laser Appl. 2019. https://doi.org/10.2351/1.5086982.
  • 18. Ahmad P, Khandaker MU, Amin YM, Amin M, Irshad MI, Din IU. Low temperature synthesis of high quality BNNTs via argon supported thermal CVD. Ceram Int. 2015. https://doi.org/10.1016/j.ceramint.2015.08.102.
  • 19. Young GA, Battige CK, Liwis N, Penik MA, Kikel J, Silvia AJ, McDonald CK. Factors Affecting the Hydrogen Embrittlement Resistance of Ni-Cr-Mn-Nb Welds. Lockheed Martin Corporation, Schenectady, NY 12301 (US); 2001; https://doi.org/10.2172/821694.
  • 20. Hussain M, Mandal V, Singh PK, Kumar P, Kumar V, Das AK. Experimental study of microstructure, mechanical and tribological properties of cBN particulates SS316 alloy based MMCs fabricated by DMLS technique. J Mech Sci Technol. 2017. https://doi.org/10.1007/s12206-017-0516-3.
  • 21. Gupta A, Hussain M, Misra S, Das AK, Mandal A. Processing and characterization of laser sintered hybrid B4C/cBN reinforced Ti-based metal matrix composite. Opt Lasers Eng. 2018. https://doi.org/10.1016/j.optlaseng.2018.01.015.
  • 22. Maji K, Pratihar DK, Nath AK. Experimental investigations, modeling, and optimization of multi-scan laser forming of AISI 304 stainless steel sheet. Int J Adv Manuf Technol. 2016. https://doi.org/10.1007/s00170-015-7675-0.
  • 23. Chen G, Xu X. Experimental and 3D finite element studies of CW laser forming of thin stainless steel sheets. J Manuf Sci Eng. 2001. https://doi.org/10.1115/1.1347036.
  • 24. Chen TC, Lin WJ, Chen DL. Effect of temperature gradient on simultaneously experimental determination of thermal expansion coefficients and elastic modulus of thin film materials. J Appl Phys. 2004. https://doi.org/10.1063/1.1789629.
  • 25. Jones I. Transmission laser welding strategies for medical plastics. InJoining Assembly Med Materials Devices. 2013. https://doi.org/10.1533/9780857096425.3.344.
  • 26. Magee J, Watkins KG, Steen WM. Advances in laser forming. J Laser Appl. 1998. https://doi.org/10.2351/1.521859.
  • 27. Raza MS, Hussain M, Kumar V, Das AK. In situ production of hard metal matrix composite coating on engineered surfaces using laser cladding technique. Journal of Materials Engineering and Performance. 2017; https://https://doi.org/10.1007/s11665-016-2427-3.
  • 28. Gong X, Lydon J, Cooper K, Chou K. Microstructural characterization and modeling of beam speed effects on Ti-6Al-4V by electron beam additive manufacturing. In2014 International Solid Freeform Fabrication Symposium 2014. University of Texas at Austin.
  • 29. Barnett V, Neter J, Wasserman W JR Stat Soc. Ser. A; 1975.
  • 30. Hussain M, Kumar V, Mandal V, Singh PK, Kumar P, Das AK. Development of cBN reinforced Ti6Al4V MMCs through laser sintering and process optimization Materials and Manufacturing Processes. 2017; https://doi.org/10.1080/10426914.2017.1303152.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-1a202cee-6c98-4445-bed0-3c98b81639e5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.