Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | Vol. 132, nr 4 | 519--532
Tytuł artykułu

Combinatorial Algorithms for Computing Degenerations of Modules of Finite Dimension

Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We present combinatorial algorithms for solving three problems that appear in the study of the degeneration order ≤degfor the variety of finite-dimensional modules over a k-algebra Δ, where M ≤deg N means that a module N belongs to an orbit closure O(M) of a module M in the variety of Δ-modules. In particular, we introduce algorithmic techniques for deciding whether or not the relation M ≤deg N holds and for determining all predecessors (resp. succesors) of a given module M with respect to ≤deg. The order ≤deg plays an important role in modern algebraic geometry and module theory. Applications of our technique and experimental tests for particular classes of algebras are presented. The results show that a computer algebra technique and algorithmic computer calculations provide important tools in solving theoretical mathematics problems of high computational complexity. The algorithms are implemented and published as a part of an open source GAP package called QPA.
Wydawca

Rocznik
Strony
519--532
Opis fizyczny
Bibliogr. 32 poz.
Twórcy
autor
  • Faculty of Mathematics and Computer Science, Nicolaus Copernicus University Chopina 12/18, 87-100 Toruń, Poland, amroz@mat.umk.pl
autor
  • Faculty of Mathematics and Computer Science, Nicolaus Copernicus University Chopina 12/18, 87-100 Toruń, Poland, gzwara@mat.umk.pl
Bibliografia
  • [1] I. Assem, D. Simson and A. Skowroński, Elements of the Representation Theory of Associative Algebras, Vol. 1, Techniques of Representation Theory, London Math. Soc. Student Texts 65, Cambridge Univ. Press, Cambridge - New York, 2006.
  • [2] G. Belitskii and V. V. Sergeichuk, Complexity of matrix problems, Linear Algebra Appl., 361 (2003),203–222.
  • [3] G. Bobiński and G. Zwara, Schubert varieties and representations of Dynkin quivers, Colloq. Math. 94(2002), 285–309.
  • [4] V. M. Bondarenko and M. V. Stepochkina, On posets of width two with positive Tits form, Algebra and Discrete Math. 2 (2005), no. 2, 20–35.
  • [5] V. M. Bondarenko and M. V. Stepochkina, Description of posets critical with respect to the nonnegativity of the quadratic Tits form, Ukrain. Mat. Zh. 61 (2009), 611–624.
  • [6] K. Bongartz and P. Gabriel, Covering spaces in representation-theory, Invent. Math. 65 (1981/82), 331-378.
  • [7] P. Dowbor and A. Mróz, The multiplicity problem for indecomposable decompositions of modules over a finite-dimensional algebra. Algorithms and a computer algebra approach, Colloq. Math. 107 (2007),221-261.
  • [8] P. Dowbor, H. Meltzer and A.Mróz, An algorithmfor the construction of exceptional modules over tubular canonical algebras, J. Algebra 323 (2010) 2710-2734.
  • [9] P. Dowbor, H. Meltzer and A. Mróz, An algorithm for the construction of parametrizing bimodules for homogeneous modules over tubular canonical algebras, Algebr. Represent. Theory (2014) 17:357-405, doi:10.1007/s10468-013-9430-2.
  • [10] P. Dräxler, J. A. Drozd, N. S. Golovachtchuk, S. A. Ovsienko, M. Zeldych, Towards the classification ofsincere weakly positive unit forms, Europ. J. Combinat. 16 (1995), 1-16.
  • [11] M. Gąsiorek and D. Simson, One-peak posets with positive Tits quadratic form and their mesh translation quivers of roots, and programming in Maple and Python, Linear Algebra and Appl. 436 (2012), 2240–2272.
  • [12] M. Grzecza, S. Kasjan and A. Mróz, Tree matrices and a matrix reduction algorithm of Belitskii, Fund.Inform. 118 (2012), 253–279.
  • [13] S. Kasjan and A. Mróz, Experiences in symbolic computations for matrix problems, Proceedings, 201214th International Symposium on Symbolic and Numeric Algorithms for Scientic Computing (SYNASC2012), IEEE Computer Society (2012), 39-44.
  • [14] J. Kosakowska, Lie algebras associated with quadratic forms and their applications to Ringel-Hall algebras, Algebra and Discrete Math. 4 (2008), 49-79.
  • [15] J. Kosakowska, Inflation algorithms for positive and principal edge-bipartite graphs and unit quadratic forms, Fund. Inform. 119 (2012), 149-162, doi: 10.3233/FI-2012-731.
  • [16] H. Kraft, Geometric methods in representation theory, in: Representations of Algebras, Springer Lecture Notes in Math. 944 (1982), 180–258.
  • [17] P. Leszczyński and K. Stencel, Update propagator for joint scalable storage, Fund. Inform. 119 (2012),337–355, doi: 10.3233/FI-2012-741.
  • [18] R. Mahmoudvand, H. Hassani, A. Farzaneh and G. Howell, The exact number of nonnegative integer solutions for a linear Diophantine inequality, IAENG Int. J. Appl. Math., 40:1, IJAM 40 1 01.
  • [19] A. Mróz, On the computational complexity of Bongartz’s algorithm, Fund. Inform. 123 (2013) 317–329.
  • [20] L. Nguyen Quang and G. Zwara, Regular orbit closures in module varieties, Osaka J. Math. 44 (2007),no. 4, 945–954.
  • [21] V. V. Sergeichuk, Canonicalmatrices for linearmatrix problems, Linear Algebra Appl. 317(2000), 53–102.
  • [22] D. Simson, Mesh algorithms for solving principal Diophantine equations, sand-glass tubes and tori of roots, Fund. Inform. 109 (2011), 425–462.
  • [23] D. Simson, Algorithms determining matrix morsifications, Weyl orbits, Coxeter polynomials and meshgeometries of roots for Dynkin diagrams, Fund. Inform. 123 (2013), 447–490.
  • [24] D. Simson, A framework for Coxeter spectral analysis of edge-bipartite graphs, their rational morsificationsand mesh geometries of root orbits, Fund. Inform. 124 (2013) 59–88, doi: 10.3233/FI-2013-836.
  • [25] D. Simson, A Coxeter-Gram classification of simply-laced edge-bipartite graphs, SIAM J. Discrite Math.27 (2013), 827–854.
  • [26] D. Simson and M. Wojewódzki, An algorithmic solution of a Birkhoff type problem, Fund. Inform. 83(2008), 389–410.
  • [27] D. Simson and K. Zając, A framework for Coxeter spectral classification of finite posets and their meshgeometries of roots, Int. J. Math. Mathematical Sciences, Vol. 2013, Article ID 743734, 22 pp., DOI:http://dx.doi.org/10.1155/2013/743734
  • [28] G. Zwara, Degenerations for modules over representation-finite biserial algebras, J. Algebra 198 (1997),563–581.
  • [29] G. Zwara, Degenerations for modules over representation-finite algebras, Proc. Amer. Math. Soc. 127(1999), 1313–1322.
  • [30] G. Zwara, Singularities of orbit closures in module varietes, in Representations of Algebras and Related Topics, ed. A. Skowroński and K. Yamagata, EMS Publishing House, Zürich (2011), 661–725.
  • [31] GAP, http://www.gap-system.org.
  • [32] QPA, http://quiverspathalg.sourceforge.net.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-19fd1208-aeee-4196-9006-6f5244063943
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.