Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 18, no. 3 | 81--103
Tytuł artykułu

Improving Traffic-noise-mitigation Strategies with LiDAR-based 3D Tree-canopy Analysis

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The leaves on trees absorb road noise and serve as noise barriers. Tree structures such as tree belts and isolated trees have various methods for absorbing sounds. The depth, surface area, and noise-absorption coefficient of trees contribute to noise absorption. Therefore, this study aims to address this issue of traffic-noise pollution through the use of trees; in particular, by analyzing the noise-absorption coefficient of leaves, the surface area of the leaves, and the depths of the trees. However, the study stresses the need for 3D tree-canopy visualization to identify these factors. To achieve this, the study used LiDAR point clouds to provide accurate data for the convex hull visualizations of canopies. Additionally, a formulated equation for calculating traffic noise after absorption has been suggested by combining the traffic-noise absorption and Henk de Kluijver traffic-noise models. The study also compares the effectiveness of tree belts and isolated trees in reducing noise pollution, concluding that, below a canopy of trees, there is no noise reduction. Finally, the study has demonstrated that the number and sizes of leaves affect noise absorption, showing that noise pollution can be reduced by 1 to 3 dB(A) in the research area by using trees.
Wydawca

Rocznik
Strony
81--103
Opis fizyczny
Bibliogr. 53 poz., rys., tab.
Twórcy
  • Universiti Teknologi Malaysia, Faculty of Built Environment and Surveying,3D GIS Research Lab, Johor Bahru, Johor, Malaysia, nevilvidyamanee@kdu.ac.lk
  • General Sir John Kotelawala Defence University, Southern Campus, Edison Hill, Nugegalayaya, Sewanagala, Sri Lanka
autor
  • Universiti Teknologi Malaysia, Faculty of Built Environment and Surveying,3D GIS Research Lab, Johor Bahru, Johor, Malaysia, mduznir@utm.my
  • Universiti Teknologi Malaysia, Faculty of Built Environment and Surveying, 3D GIS Research Lab, Johor Bahru, Johor, Malaysia, suhaibah@utm.my
Bibliografia
  • Szopińska K., Balawejder M., Warchoł A.: National legal regulations and location of noise barriers along the Polish highway. Transportation Research Part D: Transport and Environment, vol. 109, 2021, 103359. https://doi.org/10.1016/j.trd.2022.103359.
  • Thompson R., Smith R.B., Bou Karim Y., Shen C., Drummond K., Teng C., Toledano M.B.: Noise pollution and human cognition: An updated systematic review and meta-analysis of recent evidence. Environment International, vol. 158, 2021, 106905. https://doi.org/10.1016/j.envint.2021.106905.
  • Butler D.: Noise management: sound and vision. Nature, vol. 427(6974), 2004, pp. 480–481. https://doi.org/10.1038/427480a.
  • Bostanci B.: Accuracy assessment of noise mapping on the main street. Arabian Journal of Geosciences, vol. 11(1), 2018, 4. https://doi.org/10.1007/s12517-017-3343-z.
  • Jensen H.A.R., Rasmussen B., Ekholm O.: Neighbour noise annoyance is associated with various mental and physical health symptoms: results from a nationwide study among individuals living in multi-storey housing. BMC Public Health, vol. 19(1), 2019, 1508. https://doi.org/10.1186/s12889-019-7893-8.
  • Islam Z., Abdullah F., Khanom M.: Evaluation of traffic accessibility condition and noise pollution in Dhaka City of Bangladesh. American Journal of Traffic and Transportation Engineering, vol. 6(2), 2021, pp. 43–51. https://doi.org/10.11648/j.ajtte.20210602.12.
  • Halim H., Yusob M.F.M., Abdullah R., Nor M.J.M., Rahman N.A., Sukor N.S.A., Haron Z.: Noise barrier as an option to reduce road traffic noise from highways in Klang valley, Malaysia. AIP Conference Proceedings, vol. 2030(1), 2018, 020276. https://doi.org/10.1063/1.5066917.
  • Samarab T., Tsitsoni T.: The effects of vegetation on reducing traffic noise from a city ring road. Noise Control Engineering Journal, vol. 59(1), 2011, pp. 68–74. https://doi.org/10.3397/1.3528970.
  • Karbalaei S.S., Karimi E., Naji H.R., Ghasempoori S.M., Hosseini S.M., Abdollahi M.: Investigation of the traffic noise attenuation provided by roadside green belts. Fluctuation and Noise Letters, vol. 14(4), 2015, 1550036. https://doi.org/10.1142/S0219477515500364.
  • Kowalska-Koczwara A., Pachla F., Tatara T., Nering K.: Green areas in the city as an element of noise protection. IOP Conference Series: Materials Science and Engineering, vol. 1203(3), 2021, 032025. https://doi.org/10.1088/1757-899X/1203/3/032025.
  • Van Renterghem T.: Guidelines for optimizing road traffic noise shielding by non-deep tree belts. Ecological Engineering, vol. 69, 2014, pp. 276–286. https://doi.org/10.1016/j.ecoleng.2014.04.029.
  • Orikpete O.F., Leton T.G., Momoh O.L.Y., Okwu M.O.: Appraisal of industrial and environmental noise regulation in Nigeria and its impact on sustainable national development. International Journal of Scientific & Technology Research, vol. 10(09), 2021, pp. 92–103.
  • Wickramathilaka N., Ujang U., Azri S., Choon T.L.: Influence of urban green spaces on road traffic noise levels: A review, International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. XLVIII-4/W3-2022, 2022, pp. 195–201. https://doi.org/10.5194/isprs-archives-XLVIII-4-W3-2022-195-2022.
  • Peng J., Bullen R., Kean S.: The effects of vegetation on road traffic noise. [in:] Davy J., Burgess M., Don Ch., Dowsett L., McMinn T., Broner N. (eds.), 43rd International Congress and Exposition on Noise Control Engineering (Internoise 2014): Improving the World through Noise Control: Melbourne, Australia, 16–19 November 2014, Australian Acoustical Society, Melbourne 2014, pp. 4544–4553.
  • Ow L.F., Ghosh S.: Urban cities and road traffic noise: Reduction through vegetation. Applied Acoustics, vol. 120, 2017, pp. 15–20. https://doi.org/10.1016/j.apacoust.2017.01.007.
  • Gulia P., Gupta A.: Traffic noise control by periodically arranged trees. The Research Journal (TRJ), vol. 2(2), 2016, pp. 10–14. https://www.researchgate.net/publication/309430781_Traffic_Noise_Control_by_Periodically_Arranged_Trees.
  • Chih-Fang F., Der-Lin L.: Investigation of the noise reduction provided by tree belts. Landscape and Urban Planning, vol. 63(4), 2003, pp. 187–195. https://doi.org/10.1016/S0169-2046(02)00190-1.
  • Pathak V., Tripathi B.D., Mishra V.K.: Evaluation of anticipated performance index of some tree species for green belt development to mitigate traffic generated noise. Urban Forestry and Urban Greening, vol. 10(1), 2011, pp. 61–66. https://doi.org/10.1016/j.ufug.2010.06.008.
  • Joshi A., Deshmukh V., Joshi N., Rane P.: Studies on foliar sound absorption capacities of some urban trees by impedance tube method. Pollution Research, vol. 32(3), 2013, pp. 113–117.
  • Jang E.-S.: Sound absorbing properties of selected green material – a review. Forests, vol. 14(7), 2023, 1366. https://doi.org/10.3390/f14071366.
  • Dobson M., Ryan J.: Trees and Shrubs for Noise Control. Arboricultural Practice Notes, APN 6, Arboricultural Advisory and Information Service, Farnham 2000.
  • Li B., Qiu Z., Zheng J.: Impacts of noise barriers on near-viaduct air quality in a city: A case study in Xi’an. Building and Environment, vol. 196, 2021, 107751. https://doi.org/10.1016/j.buildenv.2021.107751.
  • Kalansuriya C.M., Pannila A.S., Sonnadara D.U.J.: Effect of roadside vegetation on the reduction of traffic noise levels. Proceedings of the Technical Sessions, vol. 25, 2009, pp. 1–6. http://archive.cmb.ac.lk:8080/xmlui/handle/70130/3262.
  • Ridzuan N., Wickramathilaka N., Ujang U., Azri S.: 3D Voxelisation for Enhanced Environmental Modelling Applications. Pollution, vol. 10(1), 2024, pp. 151–167. https://doi.org/10.22059/poll.2023.360562.1942.
  • Ranjbar H.R., Gharagozlou A.R., Nejad A.R.V.: 3D analysis and investigation of traffic noise impact from Hemmat Highway located in Tehran on buildings and surrounding areas. Journal of Geographic Information System, vol. 4(4), 2012, pp. 322–334. https://doi.org/10.4236/jgis.2012.44037.
  • Moreno R., Bianco F., Carpita S., Monticelli A., Fredianelli L., Licitra G.: Adjusted controlled pass-by (CPB) method for urban road traffic noise assessment. Sustainability, vol. 15(6), 2023, 5340. https://doi.org/10.3390/su15065340.
  • Fredianelli L., Carpita S., Bernardini M., Del Pizzo L.G., Brocchi F., Bianco F.: Traffic flow detection using camera images and machine learning methods in ITS for noice map and action plan optimization. Sensors, vol. 22(5), 2022, 1929. https://doi.org/10.3390/s22051929.
  • Wickramathilaka N., Ujang U., Azri S., Choon T.L.: Calculation of road traffic noise, development of data, and spatial interpolations for traffic noise visualization in three-dimensional space. Geomatics and Environmental Engineering, vol. 17(5), 2023. pp. 61–85. https://doi.org/10.7494/geom.2023.17.5.61.
  • Watanabe T., Yamada S.: Sound attenuation through absorption by vegetation. Journal of the Acoustical Society of Japan (E) [English translation of Nippon Onkyo Gakkaishi], vol. 17(4), 1996, pp. 175–182. https://doi.org/10.1250/ast.17.175.
  • Safikhani T., Abdullah A.M., Ossen D.R., Baharvand M.: A review of energy characteristic of vertical greenery systems. Renewable and Sustainable Energy Reviews, vol. 40, 2014, pp. 450–462. https://doi.org/10.1016/j.rser.2014.07.166.
  • Zhang W., He Z., Li X.: Voxel-based urban vegetation volume analysis with LiDAR point cloud. Fábos Conference on Landscape and Greenway Planning, vol. 7(1), 2022. https://doi.org/10.7275/t8fk-8w94.
  • Jurado J.M., Ortega L., Cubillas J.J., Feito F.R.: Multispectral mapping on 3D models and multi-temporal monitoring for individual characterization of olive trees. Remote Sensing, vol. 12(7), 2020, 1106. https://doi.org/10.3390/rs12071106.
  • Itakura K., Hosoi F.: Automatic individual tree detection and canopy segmentation from three-dimensional point cloud images obtained from ground-based lidar. Journal of Agricultural Meteorology, vol. 74(3), 2018, pp. 109–113. https://doi.org/10.2480/agrmet.D-18-00012.
  • Parmehr P.E., Amati M.: Individual tree canopy parameters estimation using UAV-based photogrammetric and LiDAR point clouds in an urban park. Remote Sensing, vol. 13(11), 2021, 2062. https://doi.org/10.3390/rs13112062.
  • Shimizu K., Nishizono T., Kitahara F., Fukumoto K., Saito H.: Integrating terrestrial laser scanning and unmanned aerial vehicle photogrammetry to estimate individual tree attributes in managed coniferous forests in Japan. International Journal of Applied Earth Observation and Geoinformation, vol. 106, 2021, 102658. https://doi.org/10.1016/j.jag.2021.102658.
  • Balestra M., Tonelli E., Vitali A., Urbinati C., Frontoni E., Pierdicca R.: Geomatic data fusion for 3D tree modeling: The case study of monumental chestnut trees. Remote Sensing, vol. 15(8), 2023, 2197. https://doi.org/10.3390/rs15082197.
  • Kurakula V.K., Kuffer M.: 3D noise modeling for urban environmental planning and management. [in:] Schrenk M., Popovich V.V., Engelke D., Elisei P. (eds.), REAL CORP 008: Mobility Nodes as Innovation Hubs: Proceedings of 13th International Conference on Urban Planning, Regional Development and Information Society, Competence Center of Urban and Regional Planning, Schwechat 2008, pp. 517–523.
  • Zhong L., Cheng L., Xu H., Wu Y., Chen Y., Li M.: Segmentation of individual trees from TLS and MLS data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 10(2), 2016, pp. 774–787. https://doi.org/10.1109/JSTARS.2016.2565519.
  • Paris C., Member S., Kelbe D., van Aardt J., Bruzzone L.: A novel automatic method for the fusion of ALS and TLS LiDAR data for robust assessment of tree crown structure. IEEE Transactions on Geoscience and Remote Sensing, vol. 55(7), 2017, pp. 3679–3693. https://doi.org/10.1109/TGRS.2017.2675963.
  • Rutzinger M., Pratihast A.K., Elberink S.O., Vosselman G.: Detection and modelling of 3D trees from mobile laser scanning data. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. XXXVIII, part 5, 2010, pp. 520–525. https://www.isprs.org/proceedings/XXXVIII/part5/papers/181.pdf.
  • Cai J.C., Wang X., Song J., Wang S.L., Yang S., Zhao C.J.: Development of real-time laser-scanning system to detect tree canopy characteristics for variablerate pesticide application. International Journal of Agricultural and Biological Engineering, vol. 10(6), 2017, pp. 155–163. https://doi.org/10.25165/j.ijabe.20171006.3140.
  • Qi Y., Dong X., Chen P., Lee K.H., Lan Y., Lu X., Jia R., Deng J., Zhang Y.: Canopy volume extraction of citrus reticulate blanco cv. shatangju trees using UAV image-based point cloud deep learning. Remote Sensing, vol. 13(17), 2021, 3437. https://doi.org/10.3390/rs13173437.
  • Zhao N., Prieur J.-F., Liu Y., Kneeshaw D., Lapointe E.M., Paquette A., Zinszer K., Dupras J., Villeneuve P.J., Rainham D.G., Lavigne E., Chen H., van den Bosch M., Oiamo T., Smargiassi A.: Tree characteristics and environmental noise in complex urban settings – A case study from Montreal, Canada. Environmental Research, vol. 202, 2021, 111887. https://doi.org/10.1016/j.envres.2021.111887.
  • Li L., Li D., Zhu H., Li Y.A.: Dual growing method for the automatic extraction of individual trees from mobile laser scanning data. ISPRS Journal of Photogrammetry and Remote Sensing, vol. 120, 2016, pp. 37–52. https://doi.org/10.1016/j.isprsjprs.2016.07.009.
  • Wulder M.A., Bater C.W., Coops N.C., Hilker T., White J.C.: The role of LiDAR in sustainable forest management. The Forestry Chronicle, vol. 84(6), 2008, pp. 807–826. https://doi.org/10.5558/tfc84807-6.
  • Sui L., Zhu J., Zhu H., Zhong M.: Filtering of LiDAR point cloud data based on new TIN algorithm. [in:] Proceedings of the 2017 7th International Conference on Manufacturing Science and Engineering (ICMSE 2017), Advances in Engineering Research, vol. 128, Atlantis Press, 2017, pp. 72–76. https://doi.org/10.2991/icmse-17.2017.14.
  • Maleki K., Hosseini S.: Investigation of the effect of leaves, branches and canopies of trees on noise pollution reduction. Annals of Environmental Science, vol. 5, 2016, pp. 13–21. https://openjournals.neu.edu/aes/journal/article/view/v5art3.
  • Nejad P.G., Ahmad A., Zen I.S.: Assessment of the interpolation techniques on traffic noise pollution mapping for the campus environment sustainability. International Journal of Built Environment and Sustainability, vol. 6(1–2), 2019, pp. 147–159. https://doi.org/10.11113/ijbes.v6.n1-2.393.
  • Jang H.S., Lee S.C., Jeon J.J., Kang J.: Scale model evaluation of road traffic noise abatement by vegetation treatment in a 1:10 urban scale model. The Journal of the Acoustical Society of America, vol. 138(6), 2015, pp. 3884–3895. https://doi.org/10.1121/1.4937769.
  • Hood R.A.: Calculation of road traffic noise. Applied Acoustics, vol. 21(2), 1987, pp. 139–146. https://doi.org/10.1016/0003-682X(87)90006-5.
  • Attenborough K., Bashir I., Taherzadeh S.: Exploiting ground effects for surface transport noise abatement. Noise Mapping, vol. 3(1), 2016, pp. 1–25. https://doi.org/10.1515/noise-2016-0001.
  • Qosim N.: Analysis of the noise level of the Diesel engine with 1100 RPM in the indoor condition. Journal of Applied Engineering and Technological Science (JAETS), vol. 3(2), 2022, pp. 74–79. https://doi.org/10.37385/jaets.v3i2.406.
  • Rochat J.L., Reiter D.: Highway traffic noise. Acoustics Today, vol. 12(4), 2016, pp. 38–47. https://acousticstoday.org/wp-content/uploads/2016/12/Highway-Noise.pdf.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-19eb3373-eac1-4293-9f58-f0d15596aa96
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.