Czasopismo
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
W niniejszym artykule omówiono i przedstawiono zjawisko nadprzewodnictwa i potencjalne możliwości jego wykorzystania w obszarze systemu elektroenergetycznego. Omówione zostały istotne odkrycia tego fenomenalnego zjawiska, które zainspirowało wielu naukowców na świecie do rozwijania tego zagadnienia. Obecnie nadprzewodnictwo implementowane jest na wielu płaszczyznach – energetyki, elektroniki, medycyny i wielu innych. Artykuł koncentruje się na zastosowaniach w obszarze energetyki zawodowej. Zaprezentowano kilka zasadniczych grup urządzeń nadprzewodzących mogących w przyszłości zastąpić konwencjonalną technologię przesyłową lub dystrybucyjną.
This paper discusses the phenomenon of superconductivity and its potential applications in the area of electric energy. Important discoveries in that field were presented, which inspired many scientists in the world to develop this issue further. Currently, superconductivity is implemented in many sectors – Energy, Electronics, Medicie etc. This article focuses on its application in electric energy transmission system. Several basic types of superconducting devices were presented that could successfully replace conventional transmission and distribution technologies in the future.
Czasopismo
Rocznik
Tom
Strony
44-63
Opis fizyczny
Bibliogr. 57 poz., tab., rys.
Twórcy
autor
- PSE Innowacje Sp. z o.o.
Bibliografia
- [1] Composing energy futures to 2050, World Energy Council, 2013.
- [2] R. Kleiner, Basic properties and Parameters of Superconductors, w: Applied Superconductivity. Handbook on Devices and Applications vol 1., P. Siedel, Red., Wiley-VCH, 2015, pp. 1–25.
- [3] M. Kafarski, Hybrydowe modele numeryczne nadprzewodnikowych ograniczników prądu do wyznaczania zmian prądu i temperatury podczas zwarcia, Lublin: Politechnika Lubelska, 2012.
- [4] C. Kittel, Wstęp do fizyki ciała stałego, Warszawa: Wydawnictwo Naukowe PWN, 1999.
- [5] M. Cyrot i D. Pavuna, Wstęp do nadprzewodnictwa, Warszawa: Wydawnictwo Naukowe PWN, 1996.
- [6] C. Poole, H. Farach, R. Creswick i R. Prozorov, Superconductivity, New York: Elsevier, 2014.
- [7] W. M. Woch, Wykład z nadprzewodnictwa cz. 1, dostępny na stronie: home.agh.edu.pl/~wmwoch, Kraków, 2015.
- [8] Ł. Adamczyk i T. Janowski, Elektronika nadprzewodnikowa, Warszawa: Wydawnictwa książkowe Instytutu Elektrotechniki, 2011.
- [9] T. Sowiński, Niezwykłe nadprzewodnictwo cz. 2, Młody Technik, pp. 52-55, 2010.
- [10] B. Matthias, T. Geballe, S. Geller i E. Corenzwit, Superconductivity of NbSn, Physical Review vol. 95(6), p. 1435, 1954.
- [11] J. K. Hulm i R. Blaugher, Superconducting solid solution alloys of the transition elements, Physical Review vol.123 (5), pp. 1569–1581, 1961.
- [12] L. Testardi, W. J.H. i W. Royer, Superconductivity with onset above 23K in Nb-Ge sputtered films.
- [13] M. Wu, J. Ashburn, C. Torng, P. Hor, R. Meng i L. Gao, Superconductivity at 93K in a new mixed phase Y-Ba-Cu-O compound system at ambient pressure, Physical Review Letters 58 (9), pp. 908–910, 1987.
- [14] K. Shimizu, Superconducting elements under high pressure, Physica C: Superconductivity and its applications 552, pp. 30–33, 2018.
- [15] Superconductivity, 2018 [online]. Available: https://en.wikipedia.org/wiki/ Superconductivity.
- [16] Magnetisation and superconductors, 2008 [online]. Available: https://commons. wikimedia.org/wiki/File:Magnetisation_and_superconductors.png.
- [17] C. M. Rey i A. P. Malozemoff, Fundamentals of superconductivity, w Superconductors in the Power Grid. Materials and Applications, C. Rey, Red., Woodhead Publishing series in Energy, 2015, pp. 29–70.
- [18] H. Krauth i S. Klaus, Metals, Alloys and Intermetallic Compounds, w: Applied Superconductivity. Handbook on Devices and Applications vol.1, Paul Siedel, 2015, pp. 105–128.
- [19] Noe.M., Y. Bi, J. Cho, D. Hazelton, Hwang, M. Kurrat, B. Lukasik i L. Martini, Common characteristics and emerging test techniques for high temperature superconducting power equipment, 2015.
- [20] National High Magnetic Field Laboratory, 2008 [online]. Available: https://nationalmaglab.org/images/magnet_development/asc/image_gallery/nb3sn/2d_gallery/iter_montage2008.gif.
- [21] International Thermonuclear Energy Reactor, 2018 [online]. Available: https://www.iter.org/.
- [22] The Large Hadron Collider, 2018 [online]. Available: https://home.cern/topics/large-hadron-collider.
- [23] C. Sanabria, Charlie Sanabria PhD thesis presentation, 2017 [online]. Available: https://www.youtube.com/watch?v=DHNHfkvgNfQ&feature=youtu.be&t=2m43s.
- [24] D. Nardelli, P. Ilaria i M. Tropeano, Magnesium diborode, w: Applied Superconductivity. Handbook on Devices and Applications vol. 1, P. Siedel, Red., Wiley-VCH, 2015, pp. 129–152.
- [25] J. Bednorz i K. Mueller, Possible high Tc superconductivity in the Ba-La-Cu-O system, Zeitshrift fur Physik B vol. 64, pp. 189–193, 1986.
- [26] H. Maeda, Y. Tanaka, M. Fukutomi i T. Asano, A new high-Tc oxide superconductor without a rare earth element, Japanese Journal of Applied Physics vol. 27 (2), pp. |209–210, 1988.
- [27] Z. Sheng i A. Hermann, Bulk superconductivity at 120K in the Tl-Ca/Ba-Cu-O system, Nature vol. 332, p. 138, 1988.
- [28] Z. Iqbal, T. Datta, D. Kirven, A. Lungu, J. Barry, F. Owens, A. Rinzler, D. Yang i F. Reidinger, Superconductivity above 130K in the Hg-Pb-Ba-Ca-Cu-O system, Physical Review vol. 49 (17), pp. 12322–12326, 1994.
- [29] K. Sato, Bismuth-based oxide (BSCCO) high-temperature superconducting wires for power grid applications: properties and fabrication, w Superconductors in the Power Grid. Materials and Applications, C. Rey, Red., Woodhead Publishing series in Energy, 2015, pp. 75–95.
- [30] D. Czerwiński, L. Jaroszyński, J. Kozak i M. Majka, Equivalent electromagnetic model for current leads made of HTS tapes, Przegląd Elektrotechniczny nr 88 (9b), pp. 230–233, 2012.
- [31] C. E. Bruzek, J. Saugrain, N. Lallouet i A. Allais, High-performance Bi2212/Ag tape produced at Nexans, w: Conference: Applied Superconductivity, IOP Conf. Series (EUCAS), 2004.
- [32] M. Rupich, Second-generation (2G) coated high-temperature superconducting cables and wires for power grid applications, w: Superconductors in the Power Grid. Materials and Applications, C. Rey, Red., Woodhead Publishing, 2015, pp. 97–130.
- [33] Y. Tsui, E. Surrey i D. Hampshire, Soldered joints – an essential component of demountable high temperature superconducting fusion magnets, Superconducting Science and Technology 29, pp. 1–16, 2016.
- [34] The World Bank – Electric power transmission and distribution losses (% of output) [online]. Available: https://data.worldbank.org/indicator/eg.elc.loss. zs?end=2014&start=1960&view=chart&year_high_desc=false.
- [35] F. Schmidt i A. A., Superconducting cables for power transmission applications – a review, 2016 [online]. Available: https://cds.cern.ch/record/962751/files/p232.pdf.
- [36] H. Jones, Superconductors in the transmission of electricity and networks, Energy Policy 36, pp. 4342-4345, 2008.
- [37] W. Prusseit, R. Bach i J. Bock, Superconducting Cables, w: Applied Superconductivity: Handbook on Devices and Applications red. Paul Siedel, 2015, pp. 603–616.
- [38] Nexans – brings energy to life, Nexans [online]. Available: https://www.nexans.us/eservice/US-en_US/ navigatepub_158890_-34926/Nexans_to_provide_ superconducting_cables_for_urban.html.
- [39] Korea IT Times- LS C&S, KEPCO Accelerate Next-gen Superconducting Transmission Network Development, 2011 [online]. Available: http://www.koreaittimes.com/news/articleView.html?idxno=16989.
- [40] A. Malozemoff, J. Yuan i C. Rey, High-temperature superconducting (HTS) AC cables for power grid applications, w Superconductors in the Power Grid. Materials and Applications, C. Rey, Red., Woodhead Publishing, 2015, pp. 133–188.
- [41] V. Meerovich i V. Sokolovsky, High-Temperature superconducting fault current limiters (FCLs) for power grid applications w Superconductors in the Power Grid. Materials and Applications, C. Rey, Red., Woodhead Publishing, 2015, pp. 283–323.
- [42] M. Noe, A. Hobl, P. Tixador, L. Martini i B. Dutoit, Conceptual design of a 24kV, 1kA Resistive Superconducting Fault Current Limiter, IEEE Transactions on Applied Superconductivity vol. 22 (3), 2012.
- [43] J. Hunt, Voltimum – Superconductor cables finding real-world applications, 2015 [online]. Available: https://www.voltimum. co.uk/articles/superconductor-cables-finding-real.
- [44] T. Janowski, H. Stryczewska, Kozak.S., H. Malinowski, G. Wojtasiewicz, P. Surdacki, B. Kucewicz-Kondratowicz i J. Kozak, Nadprzewodnikowe ograniczniki prądu, Lublin: Wydawnictwo Drukarnia LIBER, 2002.
- [45] S. S. Kalsi, Fault Current Limiters, w: Applied Superconductivity. Handbook on devices and applications vol.1, P. Siedel, Red., Wiley-VCH, 2015.
- [46] M. Noe i B. Oswald, Technical and economical benefits of superconducting fault current limiters in power systems, IEEE Transactions on applied superconductivity vol.9 (2), pp. 1347–1350, 1999.
- [47] A. Berger, Cherevatskiy, N. M i T. Leibfried, Comparision of the efficiency of superconducting and conventional transformers, Journal of Physics: Conference Series 234 , pp. 1–8, 2010.
- [48] A. Morandi, Transformers, w: Applied Superconductivity. Handbook on Devices and Applications vol.2, P. Siedel, Red., Wiley-VCH, 2015, pp. 645–659.
- [49] C. Weber, C. Reis, D. Hazelton, S. S.W., M. Cole, J. Demko, E. Pleva i T. Mehta, Design and operational testing of a 5/10-MVA HTS utility power transformer, IEEE Transactions on Applied Superconductivity 15 (2) available on: https://www.researchgate.net/publication/224614664_Design_ and_Operational_Testing_of_a_510-MVA_HTS_Utility_Power_Transformer, pp. 1–4, 2005.
- [50] P. Waide i C. U. Brunnder, Energy-efficiency policy opportunities for electric motor-driven systems, International Energy Agency, 2011.
- [51] J. Bray, High-temperature superconducting motors and generators for power grid applications, w Superconductors in the Power Grid. Materials and Applications, C. Rey, Red., Woodhead Publishing, 2015, pp. 325–344.
- [52] S. S. Kalsi, Rotating Machines, w: Applied Superconductivity. Handbook on Devices and applications, P. Siedel, Red., Wiley-VCH, 2015, pp. 674–692.
- [53] T. Coombs, High-temperature superconducting magnetic energy storage (SMES) for power grid applications, w Superconductors in the Power Grid. Materials and Applications, C. Rey, Red., Woodhead Publishing, 2015, pp. 345–364.
- [54] A. Morandi, Energy Storage (SMES and Flywheels), w: Applied Superconductivity. Handbook on devices and applications vol.2, P. Siedel, Red., Wiley-VCH, 2015, pp. 660–672.
- [55] S. Inage, Prospects for large-scale energy storage in decarbonized power grids, International Energy Agency, 2009.
- [56] Nexans, Superconducting Medium Voltage Cables (MV Cables) – Nexans, źródło: http://www.nexans.de/eservice/Germanyen/ navigatepub_0_-32479_-32066_2_12323/Medium_Voltage_ Cables_br_MV_Cables_.html”.
- [57] European Commission , EU Energy, Transport and GHG Emissions – Trends to 2050, European Commission E3M-Lab ICCS-NTUA with IIASA and EuroCARE, Athens, 2016.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-1949f0dc-278b-4d3e-be0a-3f64d68450ce