Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | Vol. 24, Iss. 4 | 181--187
Tytuł artykułu

Can Gafchromic EBT3 films effectively characterize small fields of 6 MV unflattened photon beams of Cyberknife system?

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Shielded silicon diodes are commonly employed in commissioning of Cyberknife 6 MV photon beams. This study aims to measure output factors, off centered ratio (OCR), percentage depth dose (PDD) of 6 MV photons using shielded and unshielded diodes and to compare with Gafchromic EBT3 film measurements to investigate whether EBT3 could effectively characterize small 6 MV photon beams. Output factors, OCR and PDD were measured with shielded and unshielded silicon detectors in a radiation field analyzer system at reference condition. Water equivalent solid phantom were used while irradiating EBT3 films. From multiuser data, diodes underestimated output factor by 3% for collimator fields ≤ 10 mm, while EBT3 underestimated the output factor by 3.9% for 5 mm collimator. 1D Gamma analysis of OCR between diode and film, results in gamma ≤ 1 for all measured points with 1 mm distance to agreement (DTA) and 1% relative dose difference (DD). Dose at surface is overestimated with diodes compared to EBT3. PDD results were within 2% relative dose values between diode and EBT3 except for 5 mm collimator. Except for small collimator fields of up to 10 mm, results of output factor, OCR, PDD of all detectors used in this study exhibited similar results. Relative dose measurements with Gafchromic EBT3 in this work show that EBT3 films can be used effectively as an independent tool to verify commissioning beam data of small fields only after careful verification of methodology for any systematic errors with appropriate readout procedure.
Wydawca

Rocznik
Strony
181--187
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
autor
  • Central Physics, Department of Radiation Oncology, HCG Enterprises Ltd., No.8, P Kalingarao Road, Sampangiram nagar, Bangalore, Karnataka, India 560027, jerry.amal@hcgoncology.com
  • School of Advanced Sciences, Vellore Institute of Technology, Vellore, India 632014
  • Central Physics, Department of Radiation Oncology, HCG Enterprises Ltd., No.8, P Kalingarao Road, Sampangiram nagar, Bangalore, Karnataka, India 560027
Bibliografia
  • [1] Kuo JS, Yu C, Petrovich Z, Apuzzo ML. The CyberKnife stereotactic radiosurgery system: description, installation, and an initial evaluation of use and functionality. Neurosurgery. 2003;62(Suppl2):785-789.
  • [2] Rueß D, Pöhlmann L, Grau S, et al. Long-term follow-up after stereotactic radiosurgery of intracanalicular acoustic neurinoma. Radiat Oncol. 2017;12(1):68.
  • [3] Cerullo LJ, Grutsch JF, Heiferman K, Osterdock R. The preservation of hearing and facial nerve function in a consecutive series of unilateral vestibular nerve schwannoma surgical patients (acoustic neuroma). Surg Neurol. 1993;39(6):485-493.
  • [4] Su TS, Liang P, Lu HZ, et al. Stereotactic body radiotherapy using CyberKnife for locally advanced unresectable and metastatic pancreatic cancer. World J Gastroenterol. 2015;21(26):8156-8162.
  • [5] Miszczyk L, Napieralska A, Namysł-Kaletka A, et al. CyberKnife-based prostate cancer patient radioablation – early results of irradiation in 200 patients. Cent European J Urol. 2015;68(3):289-295.
  • [6] Bahig H, Campeau MP, Vu T, et al. Predictive parameters of CyberKnife fiducial-less (XSight Lung) applicability for treatment of early non-small cell lung cancer: a single-center experience. Int J Radiat Oncol Biol Phys. 2013;87(3):583-589.
  • [7] Alfonso R, Andreo P, Capote R, et al. A new formalism for reference dosimetry of small and nonstandard fields. Med Phys. 2008;35(11):5179-5186.
  • [8] Laub WU, Wong T. The volume effect of detectors in the dosimetry of small fields used in IMRT. Med Phys. 2003;30(3):341-347.
  • [9] Crop F, Reynaert N, Pittomvils G, et al. The influence of small field sizes, penumbra, spot size and measurement depth on perturbation factors for microionization chambers. Phys Med Biol. 2009;54(9):2951-2969.
  • [10] Bouchard H, Seuntjens J, Carrier JF, Kawrakow I. Ionization chamber gradient effects in nonstandard beam configurations. Med. Phys. 2009;36(10):4654-4663.
  • [11] Pantelis E, Moutsatsos A, Zourari K, et al. On the implementation of a recently proposed dosimetric formalism to a robotic radiosurgery system. Med Phys. 2010;37(5):2369-2379.
  • [12] Sharma SC, Ott JT, Williams JB, Dickow D. Commissioning and acceptance testing of a CyberKnife linear accelerator. J Appl Clin Med Phys. 2007;8(3):119-125.
  • [13] Low DA, Harms WB, Mutic S, Purdy JA. A technique for the quantitative evaluation of dose distributions. Med Phys. 1998;25(5):656-661.
  • [14] International Atomic Energy Agency. Dosimetry of small static fields used in external beam radiotherapy: An International Code of Practice for Reference and Relative dose determination. Technical Reports Series No. 483, IAEA, Vienna; 2017.
  • [15] International Atomic Energy Agency. Absorbed dose determination in external beam radiotherapy: An International Code of Practice for dosimetry based on standards of absorbed dose to water. Technical Reports Series No. 398, IAEA, Vienna; 2000.
  • [16] Das IJ, Ding GX, Ahnesjö A. Small fields: nonequilibrium radiation dosimetry. Med Phys. 2008;35(1):206-215.
  • [17] Das IJ, Downes MB, Kassaee A, Tochner Z. Choice of radiation detector in dosimetry of stereotactic radiosurgery-radiotherapy. J Radiosurg. 2000;3(4):177-186.
  • [18] Das IJ, Cheng CW, Watts RJ, et al. Accelerator beam data commissioning equipment and procedures: Report of the TG-106 of the Therapy Physics Committee of the AAPM. Med Phys. 2008;35(9):4186-4215.
  • [19] Devic S. Radiochromic film dosimetry: past, present, and future. Phys Med. 2011;27(3):122-134.
  • [20] Casanova Borca V, Pasquino M, Russo G, et al. Dosimetric characterization and use of Gafchromic EBT3 film for IMRT dose verification. J Appl Clin Med Phys. 2013;14(2):158-171.
  • [21] Lewis D, Micke A, Yu X, Chan MF. An efficient protocol for radiochromic film dosimetry combining calibration and measurement in a single scan. Med Phys. 2012;39(10):6339-6350.
  • [22] Brown TA, Hogstrom KR, Alvarez D, et al. Dose-response curve of EBT, EBT2, and EBT3 radiochromic films to synchrotron-produced monochromatic x-ray beams. Med Phys. 2012;39(12):7412-7417.
  • [23] Jang J, Kang YN, Shin HJ, et al. Measurement of Beam Data for Small Radiosurgical Fields: Comparison of Cyberknife Multi-sites in Korea. Progr Nucl Sci Technol. 2011;1:537-540.
  • [24] Griessbach I, Lapp M, Bohsung J, et al. Dosimetric characteristics of a new unshielded silicon diode and its application in clinical photon and electron beams. Med Phys. 2005;32(12):3750-3754.
  • [25] Dieterich S, Cavedon C, Chuang CF, et al. Quality assurance for robotic radiosurgery: Report of AAPM TG-135. Med Phys. 2011;38(6):2914-2936.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-194345a4-7b77-4585-a302-219143039318
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.