Warianty tytułu
Języki publikacji
Abstrakty
Biochar is a known potential for nutrient removal in wastewater. This study focuses on the adsorption of rice-husk biochar to remove nutrients in the form of nitrate, ammonium, and phosphate in the wastewater. Two types of biochar production were used: laboratory-made biochar with variations of pyrolysis temperature and biochar made traditionally by local people. The results showed pyrolysis temperature influence the sorption capacity of nitrate and phosphate. The best nitrate sorption capacity using biochar made with low pyrolysis temperature, whereas the best phosphate sorption capacity using biochar made with high pyrolysis temperature. While the best ammonium sorption capacity by biochar made traditionally. The use of biochar with a coarse form shows nutrient sorption ability that is not inferior to the powder form compared to the other research. The use of coarse biochar forms can be selected if the powder form is impractical for field applications. The utilization of biochar variations can be selected according to the dominant nutrient removal needs in the field.
Czasopismo
Rocznik
Tom
Strony
247--257
Opis fizyczny
Bibliogr. 24 poz., rys., tab.
Twórcy
autor
- Environmental Engineering Department, University of Andalas, Kampus Unand Limau Manis, Padang, 25163, Indonesia
autor
- Civil Engineering Department, University of Andalas, Kampus Unand Limau Manis, Padang, 25163, Indonesia, mas_mera@eng.unand.ac.id
autor
- Environmental Engineering Department, University of Andalas, Kampus Unand Limau Manis, Padang, 25163, Indonesia
autor
- Environmental Engineering Department, University of Andalas, Kampus Unand Limau Manis, Padang, 25163, Indonesia
Bibliografia
- 1. Alsewaileh, A.S., Usman, A.R., Al-Wabel, M.I. 2019. Effects of pyrolysis temperature on nitrate-nitrogen (NO 3− -N) and bromate (BrO 3− ) adsorption onto date palm biochar. Journal of Environmental Management, 237(February), 289–296. https://doi.org/10.1016/j.jenvman.2019.02.045
- 2. An, T., Nguyen, H. 2015. Removal and Recovery of Phosphorus From Municipal Wastewater By Adsorption Coupled With Crystallization. June. https://opus.lib.uts.edu.au/handle/10453/38985
- 3. APHA. 2003. Standard Methods For The Examination of Water and Wastewater, 23rd Edition (A.D.E.EW. Rice, R.B. Baird (ed.)). American Water Works Association.
- 4. EPA. 1986. SW-846 Test Method 9081: Cation-Exchange Capacity of Soils (Sodium Acetate).
- 5. Gai, X., Wang, H., Liu, J., Zhai, L., Liu, S., Ren, T., Liu, H. 2014. Effects of feedstock and pyrolysis temperature on biochar adsorption of ammonium and nitrate. PLoS ONE, 9(12), 1–19. https://doi.org/10.1371/journal.pone.0113888
- 6. Janu, R., Mrlik, V., Ribitsch, D., Hofman, J., Sedláček, P., Bielská, L., Soja, G. 2021. Biochar surface functional groups as affected by biomass feedstock, biochar composition and pyrolysis temperature. Carbon Resources Conversion, 4(January), 36–46. https://doi.org/10.1016/j.crcon.2021.01.003
- 7. Jung, K. W., Hwang, M. J., Ahn, K. H., Ok, Y. S. 2015. Kinetic study on phosphate removal from aqueous solution by biochar derived from peanut shell as renewable adsorptive media. International Journal of Environmental Science and Technology, 12(10), 3363–3372. https://doi.org/10.1007/s13762-015-0766-5
- 8. Kermorvant, C., Liquet, B., Litt, G., Mengersen, K., Peterson, E. E., Hyndman, R. J., Jones, J. B., Leigh, C. 2023. Understanding links between water-quality variables and nitrate concentration in freshwater streams using high frequency sensor data. Plos One, 18(6), e0287640. https://doi.org/10.1371/journal.pone.0287640
- 9. Konneh, M., Wandera, S.M., Murunga, S.I., Raude, J.M. 2021. Adsorption and desorption of nutrients from abattoir wastewater: modelling and comparison of rice, coconut and coffee husk biochar. Heliyon, 7(11), e08458. https://doi.org/10.1016/j.heliyon.2021.e08458
- 10. Largitte, L., Pasquier, R. 2016. A review of the kinetics adsorption models and their application to the adsorption of lead by an activated carbon. Chemical Engineering Research and Design, 109, 495–504. https://doi.org/10.1016/j.cherd.2016.02.006
- 11. Liu, X., Zhang, Y., Li, Z., Feng, R., Zhang, Y. 2014. Characterization of corncob-derived biochar and pyrolysis kinetics in comparison with corn stalk and sawdust. Bioresource Technology, 170, 76–82. https://doi.org/10.1016/j.biortech.2014.07.077
- 12. Revellame, E.D., Fortela, D.L., Sharp, W., Hernandez, R., Zappi, M.E. 2020. Adsorption kinetic modeling using pseudo-first order and pseudo-second order rate laws: A review. Cleaner Engineering and Technology, 1(December), #100032. https://doi.org/10.1016/j.clet.2020.100032
- 13. Salimova, A., Zuo, J., Liu, F., Wang, Y., Wang, S., Verichev, K. 2020. Ammonia and phosphorus removal from agricultural runoff using cash crop waste-derived biochars. Frontiers of Environmental Science and Engineering, 14(3), 1–13. https://doi.org/10.1007/s11783-020-1225-1
- 14. Stensel, G.T.F.L.B.H.D. (2003). Wastewater Engineering: Treatment Disposal Reuse-3rd edition (B.J.C. and J.M. Morries (ed.); 4th ed.). McGraw-Hill, Inc.
- 15. Thao, V.T.M., Canh, N.T., Hang, N.L.N., Khanh, N.M., Phi, N.N., Niem, P.T.A., Anh, T.T., Nguyen, N.T.H., Duc, N.T. (2021). Adsorption of ammonium, nitrite, and nitrate onto rice husk biochar for nitrogen removal. Engineering and Technology, 11(1), 30–44. https://doi.org/10.46223/hcmcoujs.tech.en.11.1.1622.2021
- 16. Wang, J., Guo, X. 2020. Adsorption kinetic models: Physical meanings, applications, and solving methods. Journal of Hazardous Materials, 390(January), #122156. https://doi.org/10.1016/j.jhazmat.2020.122156
- 17. Wang, Z., Guo, H., Shen, F., Yang, G., Zhang, Y., Zeng, Y., Wang, L., Xiao, H., Deng, S. 2015. Biochar produced from oak sawdust by Lanthanum (La)-involved pyrolysis for adsorption of ammonium (NH4+), nitrate (NO3-), and phosphate (PO43-). Chemosphere, 119, 646–653. https://doi.org/10.1016/j.chemosphere.2014.07.084
- 18. Yang, X., Wan, Y., Zheng, Y., He, F., Yu, Z., Huang, J., Wang, H., Ok, Y.S., Jiang, Y., Gao, B. 2019. Surface functional groups of carbon-based adsorbents and their roles in the removal of heavy metals from aqueous solutions: A critical review. Chemical Engineering Journal, 366(January), 608–621. https://doi.org/10.1016/j.cej.2019.02.119
- 19. Yin, Q., Zhang, B., Wang, R., Zhao, Z. 2017. Biochar as an adsorbent for inorganic nitrogen and phosphorus removal from water: a review. Environmental Science and Pollution Research, 24(34), 26297–26309. https://doi.org/10.1007/s11356-017-0338-y
- 20. You, H., Zhang, Y., Li, W., Li, Y., Ma, Y., Feng, X. 2019. Removal of NO3-N in alkaline rare earth industry effluent using modified coconut shell biochar. Water Science and Technology, 80(4), 784–793. https://doi.org/10.2166/wst.2019.321
- 21. Zeng, Z., Zhang, S. Da, Li, T. Q., Zhao, F. L., He, Z.L., Zhao, H.P., Yang, X.E., Wang, H.L., Zhao, J., & Rafiq, M.T. 2013. Sorption of ammonium and phosphate from aqueous solution by biochar derived from phytoremediation plants. Journal of Zhejiang University: Science B, 14(12), 1152–1161. https://doi.org/10.1631/jzus.B1300102
- 22. Zhang, H., Voroney, R.P., & Price, G.W. 2017. Effects of Temperature and Activation on Biochar Chemical Properties and Their Impact on Ammonium, Nitrate, and Phosphate Sorption. Journal of Environmental Quality, 464, 889–896. https://doi.org/10.2134/jeq2017.02.0043
- 23. Zhou, L., Xu, D., Li, Y., Pan, Q., Wang, J., Xue, L., Howard, A. 2019. Phosphorus and nitrogen adsorption capacities of biochars derived from feedstocks at different pyrolysis temperatures. Water (Switzerland), 11(8), 1–16. https://doi.org/10.3390/w11081559
- 24. Zou, G., Shan, Y., Dai, M., Xin, X., Nawaz, M., Zhao, F. 2022. Comparative effectiveness of biochar derived from tropical feedstocks on the adsorption for ammonium, nitrate and phosphate. Archives of Environmental Protection, 48(4), 25–34. https://doi.org/10.24425/aep.2022.143706
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-18f61672-a1b6-4c1a-b481-c41221253dde