Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 18, no 1 | 26--35
Tytuł artykułu

Evaluation of Structural Powder Steel Properties after High-Temperature Thermomechanical Treatment and Finish Turning

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
High-temperature thermo-mechanical processing (HTTMP) is a combination of plastic deformation and heat treatment operations. Such action makes it possible to increase metal mechanical properties resulting from both mechanical strengthening and heat treatment. As a result, it is possible to achieve high complex of operating characteristics of different types of steel and other alloys. However, there is a lack of information on the applicability of HTTMP of powder steel. These types of steel are very effective substitutes for traditional structural steel but are characterized by poor mechanical properties. This study considers the possibility of using HTTMP for powder steel frame additionally infiltrated by bronze with MoS2 addition to increase mechanical properties of the materials studied. Steel infiltrated, infiltrated and then hardened, infiltrated and then HTTMP treated with strain rates of 30, 50 and 70% were compared. The microstructural properties and hardness of the materials before machining were studied as well as the cutting forces and surface topography of those materials after turning with AH8015 carbide inserts. Cutting forces tests were realized with vc = 157 m/min, f = 0.25 mm/rev and ap = 0.25 mm. Surface topography tests were carried out with vc = 157 m/min, f = 0.25 mm/rev and ap = 0.25 mm. Constant cutting parameters were used to eliminate the effects of rest factors. It was found that the lowest cutting forces (Fc, Fp and Ff), surface roughness parameters (Sa and Sq) and small areas with single high peaks on the machined surface were obtained for infiltrated powder steel with subsequent HTTMP machining under 50% strain rate.
Wydawca

Rocznik
Strony
26--35
Opis fizyczny
Bibliogr. 19 poz., fig. tab.
Twórcy
  • Faculty of Mechanical Engineering, University of Zielona Gora
  • Faculty of Mechanical Engineering, University of Zielona Gora
  • The State Scientific Institution „Powder Metallurgy Institute”, Belarusian National Academy of Sciences
  • Faculty of Mechanical Engineering, University of Zielona Gora
  • The State Scientific Institution „Powder Metallurgy Institute”, Belarusian National Academy of Sciences
Bibliografia
  • 1. Leksycki K., Maruda R.W., Feldshtein E., Wojciechowski S., Habrat W., Gupta M.K., Królczyk G.M. Evaluation of tribological interactions and machinability of Ti6Al4V alloy during finish
  • turning under different cooling conditions. Tribology International 2023; 189: 109002.
  • 2. Salak A., Selecka M., Danninger H. Machinability of powder metallurgy steels. Cambridge International Science Publishing, Cambridge, UK, 2005.
  • 3. Okimoto K. Cutting mechanism of resin impregnated sintered iron. Materials Science Forum 2010; 638−642: 1836−1841.
  • 4. Tutunea-Fatan O.R., Fakhri M.A., Bordatchev E.V. Porosity and cutting forces: from macroscale to microscale machining correlations. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 2011; 225(5): 619−630.
  • 5. Shin Y.C., Dandekar C. Mechanics and modeling of chip formation in machining of MMC. In: Machining of Metal Matrix Composites, J.P.Davim (red.). Springer, London 2012, 1−49.
  • 6. Sadat A.B. Surface integrity when machining metal matrix composites. In: Machining of Metal Matrix Composites, J.P.Davim (red.). Springer, London 2012, 51−62.
  • 7. Ilio A.D., Paoletti A. Machinability aspects of metal matrix composites. In: Machining of Metal Matrix Composites, J.P.Davim (red.). Springer, London 2012, 63–77.
  • 8. Pramanik A., Zhang L.C. Particle fracture and debonding during orthogonal machining of metal matrix composites. Advances in Manufacturing.2017; 5: 77–82.
  • 9. Obikawa T., Ohno T., Maetani T., Ozaki Y. Machining of sintered steel under different lubrication conditions. Machining Science and Technology, An International Journal 2018; 22(2): 338−352.
  • 10. Kulkarni H., Dabhade V.V. Influence of MnS in Processing and Applications of Sintered Fe-Cu-C Alloys: An Overview. Materials Today: Proceedings 2018; 5(9): 17277−17283.
  • 11. Li J., Laghari R.A. A review on machining and optimization of particle-reinforced metal matrix composites, The International Journal of Advanced Manufacturing Technology 2019; 100: 2929–2943.
  • 12. Ebersbach F.G., Builes S.D., Dorneles C.F., Schroeter R.B., Binder C., Klein A.N., Biasoli de Mello J.D. Effect of cutting parameters in machining force, surface texture and chips morphology obtained in turning of sintered self-lubricating composites. Materials Research 2020; 23(4): 0120.
  • 13. Xu J., Zhang X., Zhu F. Effects of machining parameters on surface morphology of porous bronze during monocrystalline diamond cutting. International Journal of Mechanical Sciences 2022; 234: 107686.
  • 14. Sap S., Uzun M., Usca U.A., Pimenov D.Y., Giasin K., Wojciechowski S. Investigation of machinability of Ti-B-SiCp reinforced Cu hybrid composites in dry turning. Journal of Material Research and Technology 2022; 18: 1474-1487.
  • 15. Kulkarni H., Dabhade V.V., Blais C. Analysis of machining green compacts of a sinter-hardenable powder metallurgy steel: A perspective of material removal mechanism. CIRP Journal of Manufacturing Science and Technology 2023; 41: 430–445.
  • 16. Dyachkova L.N., Feldshtein E.E. Microstructures, strength characteristics and wear behavior of the Febased P/M composites after sintering or infiltration with Cu–Sn alloy. Journal of Materials Science & Technology 2015; 31: 1226–1231.
  • 17. Klocke F. Manufacturing Processes 1. Cutting. Springer-Verlag, Berlin, Heidelberg, 2011.
  • 18. Maruda R., Leksycki K., Feldshtein E., Sąsiadek E., Szczotkarz N., Odważna M., Ochał K., Gradzik A. Effects of hard oxides reinforcing of iron-based mmcs on the surface topography features after finish turning. Advances in Science and Technology Research Journal 2023; 17(1): 15–22.
  • 19. Feldshtein E., Józwik J., Legutko S. The influence of the conditions of emulsion mist formation on the surface roughness of AISI 1045 steel after finish turning, Advances in Science and Technology Research Journal, 2016; 10(30): 144–149.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-18928fce-cd5e-422f-9c12-5460d444f4bb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.