Warianty tytułu
Języki publikacji
Abstrakty
This work presents fabrication and characterization of Al–Al2O3 composite materials with a 5%, 10%, 15% and 20% volume fraction of reinforcing phase particles. The spark plasma sintering method was applied for the purpose of fabricating these materials. The obtained Al–Al2O3 composites were characterized with an porosity from 1.27% to 5.07%. It was proven that as the content of hard ceramic particles increases in the composite, its density, hardness, and compression as well as tensile strength increase. The conducted study showed that a composite with 20% alumina content is characterized by a larger hardness (1355 MPa) and compression strength (247 MPa).
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
933--939
Opis fizyczny
Bibliogr. 21 poz., rys., tab., wykr.
Twórcy
autor
- Metal Forming Institute, 14 Jana Pawla II Street, 61-139 Poznan, Poland, dariusz.garbiec@inop.poznan.pl
autor
- Poznan University of Technology, Institute of Materials Science and Engineering, 24 Jana Pawla II Street, 60-965 Poznan, Poland
autor
- Institute of Fundamental Technological Research, 5B Pawinskiego Street, 02-106 Warsaw, Poland
autor
- Institute of Fundamental Technological Research, 5B Pawinskiego Street, 02-106 Warsaw, Poland
Bibliografia
- [1] D. Mandal, S. Viswanathan, Effect of heat treatment on microstructure and interface of SiC particle reinforced 2124 Al matrix composite, Materials Characterization 85 (2013) 73–81.
- [2] S. Das, A.K. Kukhopadhyay, S. Datta, N. Dandapat, D. Basu, Effect of dopants on the phase formation in microwave processed Al–Al2O3 composites, Journal of Alloys and Compounds 500 (2) (2010) 231–236.
- [3] Y. Yang, Z. Zhang, X. Zhang, Processing map of Al2O3 particulate reinforced Al alloy matrix composites, Materials Science and Engineering: A 558 (2012) 112–118.
- [4] B. Leszczyńska-Madej, The effect of sintering temperature on microstructure and properties of Al–SiC composites, Archives of Metallurgy and Materials 58 (1) (2013) 43–48.
- [5] M. Suśniak, J. Karwan-Baczewska, J. Dutkiewicz, M. Actis Grande, M. Rosso, Structure investigation of ball milled composite powder based on AlSi5Cu2 alloy chips modified by SiC particles, Archives of Metallurgy and Materials 58 (2) (2013) 437–441.
- [6] X. Zhu, J. Yu, X. Wang, Microstructure and properties of Al/Si/ SiC composites for electronic packaging, Transactions of Nonferrous Metals Society of China 22 (7) (2012) 1686–1692.
- [7] M. Rahimian, N. Parvin, N. Ehsani, The effect of production parameters on microstructure and wear resistance of powder metallurgy Al–Al2O3 composite, Materials & Design 32 (2) (2011) 1031–1038.
- [8] O. El-Kady, A. Fathy, Effect of SiC particle size on the physical and mechanical properties of extruded Al matrix nancomposites, Materials & Design 54 (2014) 348–353.
- [9] A. Fathy, A. Wagih, M. Abd El-Hamid, A. Hassan, The effect of Mg add on morphology and mechanical properties of Al–xMg/ 10Al2O3 nanocomposite produced by mechanical alloying, Advanced Powder Technology 25 (4) (2014) 1345–1350.
- [10] G. Zhao, Z. Shi, N. Ta, G. Ji, R. Zhang, Effect of the heating rate on the microstructure of in situ Al2O3 particle-reinforced Al matrix composites prepared via displacement reactions in an Al/CuO system, Materials & Design 66 (2015) 492–497.
- [11] P. Gudlur, A. Boczek, M. Radovic, A. Muliana, On characterizing the mechanical properties of aluminum-alumina composites, Materials Science and Engineering: A 590 (2014) 352–359.
- [12] M. Heydarzadeh Sohi, S.M.H. Hojjatzadeh, Sh.S. Moosavifar, S. Heshmati-Manesh, Liquid phase surface melting of AA8011 aluminium alloy by addition of Al/Al2O3 nano-composite powders synthesized by high-energy milling, Applied Surface Science 313 (2014) 76–84.
- [13] M. Hossein-Zadeh, O. Mirzaee, P. Saidi, Structural and mechanical characterization of Al-based composite reinforced with heat treated Al2O3 particles, Materials & Design 54 (2014) 245–250.
- [14] A. Olszówka-Myalska, J. Szala, J. Śleziona, B. Formanek, J. Myalski, Influence of Al–Al2O3 composite powder on the matrix microstructure in composite casts, Materials Characterization 49 (2) (2003) 165–169.
- [15] D. Mandal, S. Viswanathan, Effect of re-melting on particle distribution and interface formation in SiC reinforced 2124Al matrix composite, Materials Characterization 86 (2013) 21–27.
- [16] H. Izadi, A. Nolting, C. Munro, D.P. Bishop, K.P. Plucknett, A.P. Gerlich, Friction stir processing of Al/SiC composites fabricated by powder metallurgy, Journal of Materials Processing Technology 213 (11) (2013) 1900–1907.
- [17] Z. Zhang, F. Wang, J. Luo, S. Lee, L. Wang, Microstructures and mechanical properties of spark plasma sintered Al–SiC composites containing high volume fraction of SiC, Materials Science and Engineering: A 527 (27–28) (2010) 7235–7240.
- [18] K. Dash, D. Chaira, B.C. Ray, Synthesis and characterization of aluminium-alumina micro- and nano-composites by spark plasma sintering, Materials Research Bulletin 48 (7) (2013) 2535–2542.
- [19] A. Vencl, L. Bobic, S. Arostegui, B. Bobic, A. Marinković, M. Babić, Structural, mechanical and tribological properties of A356 aluminium alloy reinforced with Al2O3, SiC and SiC + graphite particles, Journal of Alloys and Compounds 506 (2) (2010) 631–639.
- [20] T. Rajmohan, K. Palanikumar, S. Arumugam, Synthesis and characterization of sintered hybrid aluminium matrix composites reinforced with nanocopper oxide particles and microsilicon carbide particles, Composites Part B: Engineering 59 (2014) 43–49.
- [21] B. Vijaya Ramnath, C. Elanchezhian, M. Jaivignesh, S. Rajesh, C. Parswajinan, A. Siddique Ahmed Ghias, Evaluation of mechanical properties of aluminium alloy-alumina-boron carbide metal matrix composites, Materials & Design 58 (2014) 332–338.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-184a8987-cb7e-4a14-b62f-9b4de08d8476