Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | Vol. 18, no. 4 | 1679--1685
Tytuł artykułu

The intermetallics growth at the interface of explosively welded A1050/Ti gr. 2/A1050 clads in relation to the explosive material

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The effect of heat treatment at 903 K on microstructure and intermetallic compound growth in explosively welded A1050/Ti gr. 2/A1050 clad was presented in the paper. Growth kinetics of TiAl3 intermetallic layers formed at upper and lower interfaces of three-layered A1050/Ti gr. 2/A1050 was investigated. A new approach to definition of growth kinetics of TiAl3 intermetallic phase was discussed. It was established that the growth was solely governed by grain boundary diffusion at the upper interface. Change of the mechanism from grain boundary diffusion to volume diffusion was observed at the lower interface.
Wydawca

Rocznik
Strony
1679--1685
Opis fizyczny
Bibliogr. 43 poz., rys., tab., wykr.
Twórcy
  • Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25 Reymonta St., 30-059 Cracow, Poland, a.wierzbicka@imim.pl
autor
  • Institute of Materials Research, Slovak Academy of Sciences, Watsonova 47, 040 01 Košice, Slovak Republic, ksaksl@imr.saske.sk
  • Faculty of Sciences, Institute of Physics, Univerzita Pavla Jozefa Šafárika v Košiciach, Šrobárova 2, Košice 041 80, Slovak Republic
autor
  • Institute of Materials Engineering, Cracow University of Technology, 37 Jana Pawla II Ave., 30-059 Cracow, Poland, kmiernik@mech.pk.edu.pl
autor
  • Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25 Reymonta St., 30-059 Cracow, Poland, r.chulist@imim.pl
autor
  • Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25 Reymonta St., 30-059 Cracow, Poland, dam.kalita@gmail.com
autor
  • High Energy Technologies Works 'Explomet', 100H Oswiecimska St., 45-641 Opole, Poland, zszulc@op.onet.pl
  • Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25 Reymonta St., 30-059 Cracow, Poland, j.wojewoda@imim.pl
Bibliografia
  • [1] B. Li, Y. Shen, L. Luo, W. Hu, Effects of processing variables and heat treatments on Al/Ti-6Al-4V interface microstructure of bimetal clad-plate fabricated via a novel route employing friction stir lap welding, J. Alloy Compd. 658 (2016) 904–913. , http://dx.doi.org/10.1016/j.jallcom.2015.10.288.
  • [2] N. Sridharan, P. Wolcott, M. Dapino, S.S. Babu, Microstructure and texture evolution in aluminum and commercially pure titanium dissimilar welds fabricated using ultrasonic additive manufacturing, Scr. Mater. 117 (2016) 1–5. , http://dx.doi.org/10.1016/j.scriptamat.2016.02.013.
  • [3] H. Wang, A. Vivek, Y. Wang, G. Taber, G.S. Daehn, Laser impact welding application in joining aluminum to titanium, J. Laser Appl. 28 (2016) 032002, http://dx.doi.org/10.2351/1.4946887.
  • [4] J. Romberg, J. Freudenberger, H. Bauder, G. Plattner, H. Krug, F. Hollander, J. Scharnweber, A. Eschke, U. Kuhn, H. Klauss, C.G. Oertel, W. Skrotzki, J. Eckert, L. Schultz, Ti/Al multi-layered sheets: accumulative roll bonding (part A), Metals 6 (30) (2016), http://dx.doi.org/10.3390/met6020030.
  • [5] L.M. Gurevich, Y.P. Trykov, O.S. Kiselev, Formation of structural and mechanical inhomogeneities in explosion welding of aluminium to titanium, Weld. Int. 28 (2014) 128–132. , http://dx.doi.org/10.1080/09507116.2013.796663.
  • [6] D.M. Fronczek, J. Wojewoda-Budka, R. Chulist, A. Sypien, A. Korneva, Z. Szulc, N. Schnell, P. Zieba, Structural properties of Ti/Al clads manufactured by explosive welding and annealing, Mater. Des. 91 (2016) 80–89. , http://dx.doi.org/10.1016/j.matdes.2015.11.087.
  • [7] D.M. Fronczek, R. Chulist, L. Litynska-Dobrzynska, Z. Szulc, P. Zieba, J. Wojewoda-Budka, Microstructure changes and phase growth occurring at the interface of the Al/Ti explosively welded and annealed joints, J. Mater. Eng. Perform. 25 (2016) 3211–3217. , http://dx.doi.org/10.1007/s11665-016-1978-7.
  • [8] H. Xia, S. Wang, H. Ben, Microstructure and mechanical properties of Ti/Al explosive cladding, Mater. Des. 56 (2014) 1014–1019. , http://dx.doi.org/10.1016/j.matdes.2013.12.012.
  • [9] J.C. E, J.Y. Huang, B.X. Bie, T. Sun, K. Fezzaa, X.H. Xiao, W. Sun, S.N. Luo, Deformation and fracture of explosion-welded Ti/Al plates: a synchrotron-based study, Mater. Sci. Eng. A 674 (2016) 308–317. , http://dx.doi.org/10.1016/j.msea.2016.07.125.
  • [10] P. Bazarnik, B. Adamczyk-Cieslak, A. Galka, B. Plonka, L. Sniezek, M. Cantoni, M. Lewandowska, Mechanical and microstructural characteristics of Ti6Al4V/AA2519 and Ti6Al4V/AA1050/AA2519 laminates manufactured by explosive welding, Mater. Des. 111 (2016) 146–157. , http://dx.doi.org/10.1016/j.matdes.2016.08.088.
  • [11] I. Szachogluchowicz, L. Sniezek, V. Hutsaylyuk, Low cycle fatigue properties of AA2519–Ti6Al4V laminate bonded by explosion welding, Eng. Fail. Anal. 69 (2016) 77–87. , http://dx.doi.org/10.1016/j.engfailanal.2016.01.001.
  • [12] D.M. Fronczek, R. Chulist, Z. Szulc, J. Wojewoda-Budka, Growth kinetics of TiAl3 phase in annealed Al/Ti/Al. explosively welded clads, Mater. Lett. 198 (2017) 160–163. , http://dx.doi.org/10.1016/j.matlet.2017.04.025.
  • [13] R. Chulist, D.M. Fronczek, Z. Szulc, J. Wojewoda-Budka, Texture transformations near the bonding zones of the three-layer Al/Ti/Al explosively welded clads, Mater. Charact. 129 (2017) 242–246. , http://dx.doi.org/10.1016/j. matchar.2017.05.007.
  • [14] T.T. Zhang, W.X. Wang, J. Zhou, X.Q. Cao, Z.F. Yan, Y. Wei, W. Zhang, Investigation of interface bonding mechanism of an explosively welded tri-metal titanium/aluminum/magnesium plate by nanoindentation, JOM 70 (2018) 504–509. , http://dx.doi.org/10.1007/s11837-017-2517-1.
  • [15] F. Foadian, M. Soltanieh, M. Adeli, M. Etminanbakhsh, The formation of TiAl3 during heat treatment in explosively welded Ti-Al multilayers, Iran J. Mater. Sci. Eng. 11 (2014) 12–19.
  • [16] F. Foadian, M. Soltanieh, M. Adeli, M. Etminanbakhsh, A study on the formation of intermetallics during the heat treatment of explosively welded Al-Ti multilayers, Metall. Mater. Trans. A 45 (2014) 1823–1832. , http://dx.doi.org/10.1007/s11661-013-2144-6.
  • [17] E.S. Ege, O.T. Inal, C.A. Zimmerly, Response surface study on production of explosively-welded aluminum-titanium laminates, J. Mater. Sci. 33 (1998) 5327–5338. , http://dx.doi.org/10.1023/A:1004485914302.
  • [18] L. Qin, J. Wang, Q. Wu, X. Guo, J. Tao, In-situ observation of crack initiation and propagation in Ti/Al composite laminates during tensile test, J. Alloy Compd. 712 (2017) 69–75. , http://dx.doi.org/10.1016/j.jallcom.2017.04.063.
  • [19] D.V. Pavliukova, V.I. Mali, A.A. Bataev, P.S. Yartsev, T.S. Sameyshcheva, L.I. Shevtsova, Influence of the explosively welded composites structure on the diffusion processes occurring during annealing, Conference IFOST 1 (2013) 183–186. , http://dx.doi.org/10.1109/IFOST.2013.6616967.
  • [20] I.A. Bataev, A.A. Bataev, V.I. Mali, D.V. Pavliukova, Structural and mechanical properties of metallic–intermetallic laminate composites produced by explosive welding and annealing, Mater. Des. 35 (2012) 225–234. , http://dx.doi.org/10.1016/j.matdes.2011.09.030.
  • [21] D.V. Lazurenko, I.A. Bataev, V.I. Mali, A.A. Bataev, Maliutina IuN, V.S. Lozhkin, M.A. Esikov, A.M.J. Jorge, Explosively welded multilayer Ti-Al composites: structure and transformation during heat treatment, Mater. Des. 102 (2016) 122–130. , http://dx.doi.org/10.1016/j.matdes.2016.04.037.
  • [22] J. Ning, L. Zhang, M. Xie, H. Yang, X. Yin, J. Zhang, Microstructure and property inhomogeneity investigations of bonded Zr/Ti/steel trimetallic sheet fabricated by explosive welding, J. Alloy Compd. 698 (2017) 835–851. , http://dx.doi.org/10.1016/j.jallcom.2016.12.213.
  • [23] F. Findik, Recent developments in explosive welding, Mater. Des. 3 (2011) 1081–1093. , http://dx.doi.org/10.1016/j.matdes.2010.10.017.
  • [24] D.M. Fronczek, R. Chulist, L. Litynska-Dobrzynska, G.A. Lopez, A. Wierzbicka-Miernik, N. Schell, Z. Szulc, J. Wojewoda-Budka, Microstructural and phase composition differences across the interfaces in Al/Ti/Al explosively welded clads, Metall. Mater. Trans. A 9 (2017) 4154–4165. , http://dx.doi.org/10.1007/s11661-017-4169-8.
  • [25] P. Manikandan, J.O. Lee, K. Mizumachi, A. Mori, K. Raghukandan, K. Hokamoto, Underwater explosive welding of thin tungsten foils and copper, J. Nucl. Phys. Mater. Sci. Radiat. Appl. 418 (2011) 281–285. , http://dx.doi.org/10.1016/j.jnucmat.2011.07.013.
  • [26] K. Hokamoto, K. Nakata, A. Mori, S. Tsuda, T. Tsumura, A. Inoue, Dissimilar material welding of rapidly solidified foil and stainless steel plate using underwater explosive welding technique, J Alloy Compd 472 (2009) 507–511. , http://dx.doi.org/10.1016/j.jallcom.2008.05.002.
  • [27] X. Guo, Y. Ma, K. Jin, H. Wang, J. Tao, M. Fan, Effect of standoff distance on the microstructure and mechanical properties of Ni/Al/Ni laminates prepared by explosive bonding, JMEPEG 26 (2017) 4235–4244. , http://dx.doi.org/10.1007/s11665-017-2890-5.
  • [28] S.A.A. Akbari Mousavi, P. Farhadi Sartangi, Experimental investigation of explosive welding of cp-titanium/AISI 304 stainless steel, Mater. Des. 30 (2009) 459–468. , http://dx.doi.org/10.1016/j.matdes.2008.06.016.
  • [29] E. Zamani, G.H. Liaghat, Explosive welding of stainless steel–carbon steel coaxial pipes, J. Mater. Sci. 47 (2012) 685–695. , http://dx.doi.org/10.1007/s10853-011-5841-9.
  • [30] V.V. Rybin, E.A. Ushanova, N.Yu. Zolotorevskii, Features of misoriented structures in a copper–copper bilayer plate obtained by explosive welding, Tech. Phys. 58 (2013) 1304–1312. , http://dx.doi.org/10.1134/S1063784213090223.
  • [31] M. Acarer, B. Gulenc, F. Findik, The influence of some factors on steel/steel bonding quality on there characteristics of explosive welding joints, J. Mater. Sci. 39 (2004) 6457–6466. , http://dx.doi.org/10.1023/B:JMSC.0000044883.33007.20.
  • [32] B. Wronka, Testing of explosive welding and welded joints. The microstructure of explosive welded joints and their mechanical properties, J. Mater. Sci. 45 (2010) 3465–3469. , http://dx.doi.org/10.1007/s10853-010-4374-y.
  • [33] D.M. Fronczek, R. Chulist, L. Litynska-Dobrzynska, S. Kac, N. Schell, Z. Kania, Z. Szulc, J. Wojewoda-Budka, Microstructure and kinetics of intermetallic phase growth of three-layered A1050/AZ31/A1050 clads prepared by explosive welding combined with subsequent annealing, Mater. Des. 130 (2017) 120–130. , http://dx.doi.org/10.1016/j.matdes.2017.05.051.
  • [34] P. Chen, J. Feng, Q. Zhou, E. An, J. Li, Y. Yuan, S. Ou, Investigation on the explosive welding of 1100 aluminum alloy and AZ31 magnesium alloy, J. Mater. Eng. Perform. 25 (2016) 2635–2641. , http://dx.doi.org/10.1007/s11665-016-2088-2.
  • [35] Y. Trykov, L. Gurevich, D. Pronichev, M. Trunov, Influence of strain-hardened zones and intermetallic layers of explosion welded and heat treated Al/Cu laminated metal composites on the evolution of thermal conductivity coefficient, Mater. Sci. 20 (2014) 267–270. , http://dx.doi.org/10.5755/j01.ms.20.3.4602.
  • [36] M. Honarpisheh, M. Asemabadi, M. Sedighi, Investigation of annealing treatment on the interfacial properties of explosive-welded Al/Cu/Al multilayer, Mater. Des. 37 (2012) 122–127. , http://dx.doi.org/10.1016/j.matdes.2011.12.045.
  • [37] M. Yazdani, M.R. Toroghinejad, S.M. Hashemi, Effects of heat treatment on interface microstructure and mechanical properties of explosively welded Ck60/St37 plates, J. Mater. Eng. Perform. 25 (2016) 5330–5342. , http://dx.doi.org/10.1007/s11665-016-2399-3.
  • [38] B.A. Greenberg, M.A. Ivanov, V.V. Rybin, O.A. Elkina, O.V. Antonova, A.M. Patselov, A.V. Inozemtsev, A.V. Plotnikov, A. Y. Volkova, Y.P. Besshaposhnikov, Mater. Charact. 75 (2013) 51–62. , http://dx.doi.org/10.1016/j.matchar.2012.10.011.
  • [39] L.F. Trueb, Microstructural effects of heat treatment on the bond interface of explosively welded metals, Metall. Trans. 2 (1971) 145–153. , http://dx.doi.org/10.1007/BF02662650.
  • [40] J. Goerlich, D. Baither, G. Schmitz, Reaction kinetics of Ni/Sn soldering reaction, Acta Mater. 58 (2010) 3187–3197. , http://dx.doi.org/10.1016/j.actamat.2010.01.027.
  • [41] T.K. Lee, S. Zhang, C.C. Wong, A.C. Tan, Dissolution and reaction between Au and molten eutectic PbSn solder, Mater. Sci. Eng. A 427 (2006) 136–141. , http://dx.doi.org/10.1016/j.msea.2006.04.041.
  • [42] V.I. Dybkov, Reaction Diffusion and Solid State Chemical Kinetics, The IPMS Publications, Kyiv, 2002.
  • [43] A. Wierzbicka-Miernik, K. Miernik, J. Wojewoda-Budka, K. Szyszkiewicz, R. Filipek, L. Litynska-Dobrzynska, A. Kodentsov, P. Zieba, Growth kinetics of the intermetallic phase in diffusion-soldered (Cu+5at.%Ni)/Sn/(Cu+5at.%Ni) interconnections, Mater. Chem. Phys. 142 (2013) 682–685. , http://dx.doi.org/10.1016/j.matchemphys.2013.08.022.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-17deb20d-d865-4903-b022-92bd904a0bc0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.