Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2024 | Vol. 72, no. 2 | 1397--1411
Tytuł artykułu

Analysis of air quality due to the eruption of La Palma using remote sensing

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Aerosols erupted from volcanoes may significantly alter climate because they can impact cloud dynamics, radiation budget, and tropospheric chemistry. The optical and physical characteristics of the Spatio-temporal variation of aerosols and gases' impact on the atmosphere during the recent La Palma eruption have been examined in the current paper from 19 September to 31 October 2021. The result shows that before the La Palma eruption, the AOD value was 0.1 showing a clear sky. However, after the eruption daily mean AOD reached the highest values of 0.7 and 0.56, showing that La Palma had high aerosol loading when the eruption occurred. The 0.4 value Aerosol index was observed. The coarse mode aerosols contributed more to the overall aerosol load than fine mode aerosols, confirming their existence above La Palma. Analysis revealed that mixed aerosols were present over La Palma. Due to the powerful ash plume's ability to scatter sunlight, the high value of Single-Scattering Albedo (~ 0.99) was detected. The maximum concentration of SO2, HCHO, NO2, O3, and CO was found to be 60 mmol/m2, 120 gmol/m2, 70 gmol/m2, 129 mmol/m2, and 50 mmol/m2, respectively, over the La Palma region. The ash plume's trajectory by the forward trajectory and the Hybrid Single Particle Lagrangian Integrated Trajectory dispersion model showed the plume moving in the southwest direction.
Wydawca

Czasopismo
Rocznik
Strony
1397--1411
Opis fizyczny
Bibliogr. 60 poz.
Twórcy
  • Remote Sensing, GIS and Climatic Research Lab (National Center of GIS and Space Applications), Centre for Remote Sensing, University of the Punjab, Lahore, Pakistan
autor
  • Department of Physics, University of Lahore, Lahore, Pakistan
autor
  • Remote Sensing, GIS and Climatic Research Lab (National Center of GIS and Space Applications), Centre for Remote Sensing, University of the Punjab, Lahore, Pakistan
Bibliografia
  • 1. Adach W, Błaszczyk M, Olas B (2020) Carbon monoxide and its donors—chemical and biological properties. Chem Biol Interact 318:1. https://doi.org/10.1016/J.CBI.2020.108973
  • 2. Afonso L (1985) La Palma. In: Geografía de Canarias 4, Afonso L (ed) Interinsular Canaria, S/C de Tenerife - Google Search. (n.d.). https://www.google.com/search?q=Afonso+L+%281985%29+ La+Palma.+In%3A+Geografía+de+Canarias+4%2C+Afonso+ L+%28ed%29.+Interinsular+Canaria%2C+S%2FC+de+Tener ife&rlz=1C1SQJL_enPK998PK998&ei=PCTcYubhLLC49u8 P2IidiAc&ved=0ahUKEwjm776_uY_5AhUwnP0HHVhEB3 EQ4dUDCA4&uact=5&oq=Afonso+L+%281985%29+La+
  • 3. Palma.+In%3A+Geografía+de+Canarias+4%2C+Afonso+L+% 28ed%29.+Interinsular+Canaria%2C+S%2FC+de+Tenerife&gs_ lcp=Cgdnd3Mtd2l6EAMyCAgAEI8BEOoCMggILhCPARDq AjIICAAQjwEQ6gIyCAgAEI8BEOoCMggIABCPARDqAjIIC AAQjwEQ6gIyCAgAEI8BEOoCMggIABCPARDqAjIICAAQjw EQ6gIyCAgAEI8BEOoCSgQIQRgASgQIRhgAUK0LWK 0LYNMWaAJwAXgAgAEAiAEAkgEAmAEAoAEBoAECsA EKwAEB&sclient=gws-wiz. Retrieved 23 July 23 2022
  • 4. Anda M, Suparto S (2016) Characteristics of pristine volcanic materials: beneficial and harmful effects and their management for restoration of agroecosystem. Sci Total Environ 543:480-492. https:// doi.org/10.1016/J.SCITOTENV.2015.10.157
  • 5. Andreae MO, Gelencsér A (2006) Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols. Atmos Chem Phys 6(10):3131-3148. https://doi.org/10.5194/ACP-6-3131-2006
  • 6. Bagheri R, Bagheri F, Karami GH, Jafari H (2019) Chemo-isotopes (18O & 2H) signatures and HYSPLIT model application: clues to the atmospheric moisture and air mass origins. Atmos Environ 215:116892. https://doi.org/10.1016/J.ATMOSENV.2019.116892
  • 7. Becerril L, Galindo I, Gudmundsson A, Morales JM (2013) Depth of origin of magma in eruptions. Sci Rep. https://doi.org/10.1038/ srep02762
  • 8. Bergstrom RW, Pilewskie P, Russell PB, Redemann J, Bond TC, Quinn PK, Sierau B (2007) Spectral absorption properties of atmospheric aerosols. Atmos Chem Phys 7(23):5937-5943. https://doi. org/10.5194/ACP-7-5937-2007
  • 9. CAMS monitors transport of SO2 from La Palma volcano|Copernicus. (2022). https://atmosphere.copernicus.eu/cams-monitors-trans port-so2-la-palma-volcano. Retrieved 6 April 2022
  • 10. Chen TM, Gokhale J, Shofer S, Kuschner WG (2007) Outdoor air pollution: nitrogen dioxide, sulfur dioxide, and carbon monoxide health effects. Am J Med Sci 333(4):249-256. https://doi.org/10. 1097/MAJ.0B013E31803B900F
  • 11. Chen J, Liu Z, Yin Z, Liu X, Li X, Yin L, Zheng W (2023) Predict the effect of meteorological factors on haze using BP neural network. Urban Clim 51:101630. https://doi.org/10.1016/j.uclim. 2023.101630
  • 12. Cheng Y, Lan S, Fan X, Tjahjadi T, Jin S, Cao L (2023) A dual-branch weakly supervised learning based network for accurate mapping of woody vegetation from remote sensing images. Int J Appl Earth Obs Geoinf 124:103499. https://doi.org/10.1016/j.jag.2023. 103499
  • 13. Costa S, Ferreira J, Silveira C, Costa C, Lopes D, Relvas H, Borrego C, Roebeling P, Miranda AI, Paulo Teixeira J (2014) Integrating health on air quality assessment—review report on health risks of two major European outdoor air pollutants: PM and NO2. J Toxicol Environ Health Part B 17(6):307-340. https://doi.org/ 10.1080/10937404.2014.946164
  • 14. Derimian Y, Dubovik O, Tanre D, Goloub P, Lapyonok T, Mortier A (2012) Optical properties and radiative forcing of the Eyjafjal-lajökull volcanic ash layer observed over Lille, France, in 2010. J Geophys Res Atmos. https://doi.org/10.1029/2011JD016815
  • 15. Dong W, Zhao J, Qu J, Xiao S, Li N, Hou S, Li Y (2023) Abundance matrix correlation analysis network based on hierarchical multihead self-cross-hybrid attention for hyperspectral change detection. IEEE Trans Geosci Remote Sens. https://doi.org/10.1109/ TGRS.2023.3235401
  • 16. Dubovik O, King MD (2000) A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements. J Geophys Res Atmos 105(D16):20673-20696. https://doi.org/10.1029/2000JD900282
  • 17. Dubovik O, Holben B, Eck TF, Smirnov A, Kaufman YJ, King MD, Tanré D, Slutsker I (2002) Variability of absorption and optical properties of key aerosol types observed in worldwide locations. J Atmos Sci 59(3):590-608. https://doi.org/10.1175/1520-0469(2002)059%3C0590%3AVOAAOP%3E2.0.C
  • 18. Eck T, Reid JS, Dubovik O, Eck TF, Holben BN, Reid JS, O’neill NT, Schafer JS, Dubovik O, Smirnov A, Yamasoe MA, Artaxo P, Holben BFN (2003) High aerosol optical depth biomass burning events: a comparison of optical properties for different source regions. Wiley Online Library 30(20):2035. https://doi. org/10.1029/2003GL017861
  • 19. Fabricio Neta ADB, do Nascimento CWA, Biondi CM, van Straaten P, Bittar SMB (2018) Natural concentrations and reference values for trace elements in soils of a tropical volcanic archipelago. Environ Geochem Health 40(1):163-173. https://doi.org/10. 1007/S10653-016-9890-5
  • 20. Franz M, Zaehle S (2021) Competing effects of nitrogen deposition and ozone exposure on northern hemispheric terrestrial carbon uptake and storage, 1850-2099. Biogeosciences 18(10):3219-3241. https://doi.org/10.5194/bg-18-3219-2021
  • 21. García-Cervigón AI, García-Hidalgo M, Martín-Esquivel JL, Rozas V, Sangüesa-Barreda G, Olano JM (2019) The Patriarch: a Canary Islands juniper that has survived human pressure and volcanic activity for a millennium. Ecology 100(10):e02780. https://doi. org/10.1002/ECY.2780
  • 22. Holben BN, Eck TF, Slutsker I, Tanré D, Buis JP, Setzer A, Vermote E, Reagan JA, Kaufman YJ, Nakajima T, Lavenu F, Jankowiak I, Smirnov A (1998) AERONET—a federated instrument network and data archive for aerosol characterization. Remote Sens Environ 66(1):1-16. https://doi.org/10.1016/S0034-4257(98) 00031-5
  • 23. Hunt WH, Winker DM, Vaughan MA, Powell KA, Lucker PL, Weimer C (2009) CALIPSO lidar description and performance assessment. J Atmos Oceanic Technol 26:1214-1228. https://doi.org/ 10.1175/2009JTECHA1223.1
  • 24. Isaksen ISA, Hov 0 (2017) Calculation of trends in the tropospheric concentration of O3, OH, CO, CH4 and NOx. Tellus B 39(3):271-285. https://doi.org/10.3402/TELLUSB.V39I3.15347
  • 25. Jose S, Kumar Mishra A, Lodhi NK, Kumar Sharma S, Singh S (2021) Characteristics of aerosol size distributions and new particle formation events at Delhi: an urban location in the Indo-Gangetic Plains. Front Earth Sci. https://doi.org/10.3389/feart.2021.750111
  • 26. Kremser S, Thomason LW, von Hobe M, Hermann M, Deshler T, Tim-mreck C, Toohey M, Stenke A, Schwarz JP, Weigel R, Fueglistaler S, Prata FJ, Vernier JP, Schlager H, Barnes JE, Antuňa-Marrero JC, Fairlie D, Palm M, Mahieu E, Notholt J, Rex M, Bingen C, Vanhellemont F, Bourassa A, Plane JMC, Klocke D, Carn SA, Clarisse L, Trickl T, Neely R, James AD, Rieger L, Wilson JC, Meland B (2016) Stratospheric aerosol—observations, processes, and impact on climate. Rev Geophys 54(2):278-335. https://doi. org/10.1002/2015RG000511
  • 27. Longpré MA (2021) Reactivation of Cumbre Vieja volcano. Science 374(6572):1197-1198. https://doi.org/10.1126/SCIENCE. ABM9423
  • 28. Longpré MA, Felpeto A (2021) Historical volcanism in the Canary Islands; part 1: a review of precursory and eruptive activity, eruption parameter estimates, and implications for hazard assessment. J Volcanol Geotherm Res 419:107363. https://doi.org/10.1016/J. JVOLGEORES.2021.107363
  • 29. Lyapustin A, Martonchik J, Wang Y, Laszlo I, Korkin S (2011a) Multiangle implementation of atmospheric correction (MAIAC): 1. Radiative transfer basis and look-up tables. J Geophys Res Atmos. https://doi.org/10.1029/2010JD014985
  • 30. Lyapustin A, Wang Y, Laszlo I, Kahn R, Korkin S, Remer L, Levy R, Reid JS (2011b) Multiangle implementation of atmospheric correction (MAIAC): 2. Aerosol algorithm. J Geophys Res Atmos 116(3):1-15. https://doi.org/10.1029/2010JD014986
  • 31. Ma S, Qiu H, Yang D, Wang J, Zhu Y, Tang B, Sun K, Cao M (2023) Surface multi-hazard effect of underground coal mining. Landslides 20(1):39-52. https://doi.org/10.1007/s10346-022-01961-0
  • 32. Pérez-Hernández E, Peňa-Alonso C, Fernández-Cabrera E, Hernán-dez-Calvento L (2021) Assessing the scenic quality of transgressive dune systems on volcanic islands. The case of Corralejo (Fuerteventura island, Spain). Sci Total Environ 784:147050. https://doi.org/10.1016/J.SCITOTENV.2021.147050
  • 33. Petzold A, Ogren JA, Fiebig M, Laj P, Li SM, Baltensperger U, HolzerPopp T, Kinne S, Pappalardo G, Sugimoto N, Wehrli C, Wiedensohler A, Zhang XY (2013) Recommendations for reporting black carbon measurements. Atmos Chem Phys 13(16):8365-8379. https://doi.org/10.5194/ACP-13-8365-2013
  • 34. Qu S, Chen X, Wang Y, Shi P, Shan S, Gou J, Jiang P (2018) Isotopic characteristics of precipitation and origin of moisture sources in Hemuqiao catchment, a small watershed in the lower reach of Yangtze River. Water (switzerland) 10(9):1-15. https://doi.org/ 10.3390/w10091170
  • 35. Querol X, Alastuey A, Rodríguez S, Viana MM, Artíňano B, Salvador P, Mantilla E, Do Santos SG, Patier RF, De La Rosa J, De La Campa AS, Menéndez M, Gil JJ (2004) Levels of particulate matter in rural, urban and industrial sites in Spain. Sci Total Environ 334-335:359-376. https://doi.org/10.1016/J.SCITOTENV.2004. 04.036
  • 36. Rao W, Zhang W, Yong B, Tan H, Meredith KT, Jin K, Zheng F, Wang S (2018) Identifying the source of atmospheric moisture over arid deserts using stable isotopes (2H and 18O) in precipitation. Hydrol Process 32(3):436-449. https://doi.org/10.1002/ HYP.11431
  • 37. Risk and Recovery Mapping Portfolio | COPERNICUS EMERGENCY MANAGEMENT SERVICE (2022) https://emergency.coper nicus.eu/mapping/ems/risk-and-recovery-mapping-portfolio. Retrieved 17 Aug 2022
  • 38. Ruggieri F, Saavedra J, Fernandez-Turiel JL, Gimeno D, Garcia-Valles M (2010) Environmental geochemistry of ancient volcanic ashes. J Hazard Mater 183(1-3):353-365. https://doi.org/10.1016/J. JHAZMAT.2010.07.032
  • 39. Schafer JS, Eck TF, Holben BN, Thornhill KL, Ziemba LD, Sawamura P, Moore RH, Slutsker I, Anderson BE, Sinyuk A, Giles DM, Smirnov A, Beyersdorf AJ, Winstead EL (2019) Intercomparison of aerosol volume size distributions derived from AERONET ground-based remote sensing and LARGE in situ aircraft profiles during the 2011-2014 DRAGON and DISCOVER-AQ experiments. Atmos Meas Tech 12(10):5289-5301. https://doi.org/10. 5194/amt-12-5289-2019
  • 40. Sellitto P, Salerno G, La Spina A, Caltabiano T, Scollo S, Boselli A, Leto G, Zanmar Sanchez R, Crumeyrolle S, Hanoune B, Briole P (2020) Small-scale volcanic aerosols variability, processes and direct radiative impact at Mount Etna during the EPLRADIO campaigns. Sci Rep 10(1):1-13. https://doi.org/10.1038/ s41598-020-71635-1
  • 41. Smith SJ, Van Aardenne J, Klimont Z, Andres RJ, Volke A, Delgado Arias S (2011) Anthropogenic sulfur dioxide emissions: 18502005. Atmos Chem Phys 11(3):1101-1116. https://doi.org/10. 5194/ACP-11-1101-2011
  • 42. Soni K, Singh S, Bano T, Tanwar RS, Nath S, Arya BC (2010) Variations in single scattering albedo and Angstrom absorption exponent during different seasons at Delhi, India. Atmos Environ 44(35):4355-4363. https://doi.org/10.1016/J.ATMOSENV. 2010.07.058
  • 43. Srivastava AK, Soni VK, Singh S, Kanawade VP, Singh N, Tiwari S, Attri SD (2014) An early South Asian dust storm during March 2012 and its impacts on Indian Himalayan foothills: a case study. Sci Total Environ 493:526-534. https://doi.org/10.1016/J.SCITO TENV.2014.06.024
  • 44. Tariq S, ul-Haq Z, Ali M (2016) Satellite and ground-based remote sensing of aerosols during intense haze event of October 2013 over Lahore, Pakistan. Asia Pac J Atmos Sci 52(1):25-33. https:// doi.org/10.1007/S13143-015-0084-3
  • 45. Tian H, Huang N, Niu Z, Qin Y, Pei J, Wang J (2019) Mapping winter crops in china with multi-source satellite imagery and phenologybased algorithm. Remote Sens (Basel, Switzerland) 11(7):820. https://doi.org/10.3390/rs11070820
  • 46. Tian H, Pei J, Huang J, Li X, Wang J, Zhou B, Qin Y, Wang L (2020) Garlic and winter wheat identification based on active and passive satellite imagery and the Google Earth Engine in Northern China. Remote Sens (Basel, Switzerland) 12(3539):3539. https://doi.org/ 10.3390/rs12213539
  • 47. Theys N, Hedelt P, De Smedt I, Lerot C, Yu H, Vlietinck J, Pedergnana M, Arellano S, Galle B, Fernandez D, Carlito CJM, Barrington C, Taisne B, Delgado-Granados H, Loyola D, Van Roozendael M (2019) Global monitoring of volcanic SO 2 degassing with unprecedented resolution from TROPOMI onboard Sentinel-5 Precursor. Sci Rep. https://doi.org/10.1038/S41598-019-39279-Y
  • 48. Ul-Haq Z, Rana AD, Ali M, Mahmood K, Tariq S, Qayyum Z (2015) Carbon monoxide (CO) emissions and its tropospheric variability over Pakistan using satellite-sensed data. Adv Space Res 56(4):583-595. https://doi.Org/10.1016/J.ASR.2015.04.026
  • 49. Van Kempen TA, Oggionni F, Van Hees RM (2021) Monitoring the Tropospheric Monitoring Instrument (TROPOMI) short-wave infrared (SWIR) module instrument stability using desert sites. Atmos Meas Tech 14(10):6711-6722. https://doi.org/10.5194/ amt-14-6711-2021
  • 50. Vandenplas O, Fievez P, Delwiche JP, Boulanger J, Thimpont J (2004) Persistent asthma following accidental exposure to formaldehyde. Allergy 59(1):115-116. https://doi.org/10.1046/J.1398-9995. 2003.00340.X
  • 51. Veefkind JP, Aben I, McMullan K, Förster H, de Vries J, Otter G, Claas J, Eskes HJ, de Haan JF, Kleipool Q, van Weele M, Hasekamp O, Hoogeveen R, Landgraf J, Snel R, Tol P, Ingmann P, Voors R, Kruizinga B, Vink R, Visser H, Levelt PF (2012) TROPOMI on the ESA Sentinel-5 Precursor: a GMES mission for global observations of the atmospheric composition for climate, air quality and ozone layer applications. Remote Sens Environ 120:70-83. https://doi.org/10.1016/J.RSE.2011.09.027
  • 52. Wang X, Wang T, Xu J, Shen Z, Yang Y, Chen A, Wang S, Liang E, Piao S (2022) Enhanced habitat loss of the Himalayan endemic flora driven by warming-forced upslope tree expansion. Nat Ecol Evol 6(7):890-899. https://doi.org/10.1038/s41559-022-01774-3
  • 53. Wen Z, Wang Q, Ma Y, Jacinthe PA, Liu G, Li S, Shang Y, Tao H, Fang C, Lyu L, Zhang B, Song K (2023) Remote estimates of suspended particulate matter in global lakes using machine learning models. Int Soil Water Conserv Res. https://doi.org/10.1016/j. iswcr.2023.07.002
  • 54. Wu H, Zhang X, Xiaoyan L, Li G, Huang Y (2015) Seasonal variations of deuterium and oxygen-18 isotopes and their response to moisture source for precipitation events in the subtropical monsoon region. Hydrol Process 29(1):90-102. https://doi.org/10.1002/ HYP.10132
  • 55. Xingna Y, Bin Z, Yan Y, Shuxian F, Aijun C, Xingna Y, Bin Z, Yan Y, Shuxian F, Aijun C (2011) Seasonal variation of columnar aerosol optical properties in Yangtze River Delta in China. Adv Atmos Sci 28(6):1326-1335. https://doi.org/10.1007/S00376-011-0158-9
  • 56. Yin L, Wang L, Ge L, Tian J, Yin Z, Liu M, Zheng W (2023) Study on the thermospheric density distribution pattern during geomagnetic activity. Appl Sci 13(9). https://doi.org/10.3390/app13095564
  • 57. Zhang S, Bai X, Zhao C, Tan Q, Luo G, Wang J, Li Q, Wu L, Chen F, Li C, Deng Y, Yang Y, Xi H (2021) Global CO2 consumption by silicate rock chemical weathering: its past and future. Earth's Future 9(5):e1938Ee2020E. https://doi.org/10.1029/2020EF0019 38
  • 58. Zhu W, Chen J, Sun Q, Li Z, Tan W, Wei Y (2022) Reconstructing of high-spatial-resolution three-dimensional electron density by ingesting SAR-derived VTEC into IRI model. IEEE Geosci Remote Sens Lett. https://doi.org/10.1109/LGRS.2022.3178242
  • 59. Zhuo Z, Du L, Lu X, Chen J, Cao Z (2022) Smoothed Lv Distribution Based Three-Dimensional Imaging for Spinning Space Debris. IEEE Trans Geosci Remote Sens 60:1-13. https://doi.org/10.1109/ TGRS.2022.3174677
  • 60. Zielinski T, Petelski T, Strzalkowska A, Pakszys P, Makuch P (2016) Impact of wild forest fires in Eastern Europe on aerosol composition and particle optical properties. Oceanologia 58(1):13-24. https://doi.org/10.1016/J.OCEANO.2015.07.005
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-175fd942-35fa-4253-9122-f1bdb8b3c908
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.