Warianty tytułu
Języki publikacji
Abstrakty
Autism spectrum disorders (ASD) arise from a complex interplay between genetic predisposition and various environmental factors, leading to diverse and intricate conditions. Over recent decades, there has been a noticeable increase in autism prevalence. Thus, the main objective of this exploratory investigation is to evaluate the effects of heavy metal poisoning on the metabolic and nutritional profiles of 20 children diagnosed with autism spectrum disorder (ASD) in Morocco. Based on the descriptive statistical methods and the chi-square (χ2 ) test, we analyzed the results of the study, which involved around 100 biological parameters conducted in the United States (Mosaic Diagnostics) .The results revealed that variations in neurotransmitter production, dysbiosis, yeast overgrowth, elevated oxidative stress, mitochondrial dysfunction, increased oxalate levels, and deficiencies in vitamins and minerals among the children were connected to heavy metal poisoning and intoxication. These findings underscored the link between metabolic profiles and heavy metal poisoning, highlighting the need for individualized and multidisciplinary care approaches for children with ASD. Further research and controlled clinical trials are necessary to validate these interventions comprehensively.
Rocznik
Tom
Strony
150--161
Opis fizyczny
Bibliogr. 38 poz., rys., tab.
Twórcy
autor
- Laboratory of Biology and Health (LBS), Nutrition, Food and Health Sciences Research Team (ESNAS), Faculty of sciences, Ibn Tofail University, PoBOX: 133, Kenitra 14000, Morocco, Rihab.chouari@uit.ac.ma
autor
- Laboratory of Biology and Health (LBS), Nutrition, Food and Health Sciences Research Team (ESNAS), Faculty of sciences, Ibn Tofail University, PoBOX: 133, Kenitra 14000, Morocco, Loubna.leftat@uit.ac.ma
autor
- Laboratory of Biology and Health (LBS), Nutrition, Food and Health Sciences Research Team (ESNAS), Faculty of sciences, Ibn Tofail University, PoBOX: 133, Kenitra 14000, Morocco, fatine.elarabi@gmail.com
autor
- Laboratory of Biology and Health (LBS), Nutrition, Food and Health Sciences Research Team (ESNAS), Faculty of sciences, Ibn Tofail University, PoBOX: 133, Kenitra 14000, Morocco, bour.abdellatif@gmail.com
Bibliografia
- 1. Abdulamir, H.A., Abdul-Rasheed, O.F., Abdulghani, E.A. 2018. Serotonin and serotonin transporter levels in autistic children. Saudi Medical Journal, 39(5), 487–494. https://doi.org/10.15537/smj.2018.5.21751
- 2. Alabi, O., Bukola, T. 2023. Introduction to descriptive statistics. In recent advances in biostatistics [Working Title]. IntechOpen. https://doi.org/10.5772/intechopen.1002475
- 3. Austin, C., Curtin, P., Arora, M., Reichenberg, A., Curtin, A., Iwai-Shimada M., Wright, R., Wright, R., Remnelius, K.L., Isaksson, J., Bolte, S., Nakayama, S. 2022. Elemental dynamics in hair accurately predict future autism spectrum disorder diagnosis: An international multi-center study. https://doi.org/10.21203/rs.3.rs-1307805/v1
- 4. Azdem, D., Mabrouki, J., Moufti, A., El Hajjaji, S., Fatni, A. 2024. Assessment of heavy metal contamination in seawater in Agadir coastline, Morocco. Desalination and Water Treatment, 317, 100129. https://doi.org/10.1016/j.dwt.2024.100129
- 5. Azhari, H.E., Cherif, E.K., Sarti, O., Azzirgue, E.M., Dakak, H., Yachou, H., Esteves Da Silva, J.C.G., Salmoun, F. 2022. Assessment of surface water quality using the water quality index (IWQ), multivariate statistical analysis (MSA) and Geographic Information System (GIS) in Oued Laou Mediterranean Watershed, Morocco. Water, 15(1), 130. https://doi.org/10.3390/w15010130
- 6. Bamicha, V., Drigas, A. 2022. ToM & ASD: The interconnection of theory of mind with the socialemotional, cognitive development of children with autism spectrum disorder. The use of ICTs as an alternative form of intervention in ASD. Technium Social Sciences Journal, 33, 42–72. https://doi.org/10.47577/tssj.v33i1.6845
- 7. Bjørklund, G., Skalny, A.V., Rahman, Md. M., Dadar, M., Yassa, H.A., Aaseth, J., Chirumbolo, S., Skalnaya, M.G., Tinkov, A.A. 2018. Toxic metal(loid)-based pollutants and their possible role in autism spectrum disorder. Environmental Research, 166, 234–250. https://doi.org/10.1016/j.envres.2018.05.020
- 8. Błażewicz, A., Grabrucker, A.M. 2022. Metal profiles in autism spectrum disorders: A crosstalk between toxic and essential metals. International Journal of Molecular Sciences, 24(1), 308. https://doi.org/10.3390/ijms24010308
- 9. Caporale, N., Leemans, M., Birgersson, L., Germain, P.L., Cheroni, C., Borbély, G., Engdahl, E., Lindh, C., Bressan, R.B., Cavallo, F., Chorev, N.E., D’Agostino, G.A., Pollard, S.M., Rigoli, M.T., Tenderini, E., Tobon, A.L., Trattaro, S., Troglio, F., Zanella, M., Testa, G. 2022. From cohorts to molecules: Adverse impacts of endocrine disrupting mixtures. Science, 375(6582), eabe8244. https://doi.org/10.1126/science.abe8244
- 10. Chojnacka, K., Mikulewicz, M. 2023. Chemical elements in hair and their association with autism spectrum disorder: A comprehensive systematic review. Pollutants, 3(4), 587–602. https://doi.org/10.3390/pollutants3040038
- 11. Cooksey, R.W. 2020. Descriptive statistics for summarising data. Illustrating statistical procedures: Finding meaning in quantitative Data (p. 61–139). Springer Singapore. https://doi.org/10.1007/978-981-15-2537-7_5
- 12. Ding, M., Shi, S., Qie, S., Li, J., Xi, X. 2023. Association between heavy metals exposure (cadmium, lead, arsenic, mercury) and child autistic disorder: A systematic review and meta-analysis. Frontiers in Pediatrics, 11, 1169733. https://doi.org/10.3389/fped.2023.1169733
- 13. Elsheshtawy, E., Tobar, S., Sherra, K., Atallah, S., Elkasaby, R. 2011. Study of some biomarkers in hair of children with autism. Middle East Current Psychiatry, 18(1), 6–10. https://doi.org/10.1097/01.XME.0000392842.64112.64
- 14. Essa, M.M., Subash, S., Braidy, N., Al-Adawi, S., Lim, C. K., Manivasagam, T., Guillemin, G. J. 2013. Role of NAD +, oxidative stress, and tryptophan metabolism in autism spectrum disorders. International Journal of Tryptophan Research, 6s1, IJTR. S11355. https://doi.org/10.4137/IJTR.S11355
- 15.Fido, A., Al-Saad, S. 2005. Toxic trace elements in the hair of children with autism. Autism, 9(3), 290– 298. https://doi.org/10.1177/1362361305053255
- 16. Fiłon, J., Ustymowicz-Farbiszewska, J., KrajewskaKułak, E. 2020. Analysis of lead, arsenic and calcium content in the hair of children with autism spectrum disorder. BMC Public Health, 20(1), 383. https://doi.org/10.1186/s12889-020-08496-w
- 17. Geier, D., Kern, J., King, P., Sykes, L., Geier, M. 2012. Hair toxic metal concentrations and autism spectrum disorder severity in young children. International Journal of Environmental Research and Public Health, 9(12), 4486–4497. https://doi.org/10.3390/ijerph9124486
- 18. Goldfeder, R.L., Priest, J.R., Zook, J.M., Grove, M.E., Waggott, D., Wheeler, M. T., Salit, M., Ashley, E.A. 2016. Medical implications of technical accuracy in genome sequencing. Genome Medicine, 8(1), 24. https://doi.org/10.1186/s13073-016-0269-0
- 19.Gorini, F., Muratori, F., Morales, M.A. 2014. The role of heavy metal pollution in neurobehavioral disorders: A focus on autism. Review Journal of Autism and Developmental Disorders, 1(4), 354– 372. https://doi.org/10.1007/s40489-014-0028-3
- 20. Hazra, A., Gogtay, N. 2016. Biostatistics series module 4: Comparing groups - categorical variables. Indian Journal of Dermatology, 61(4), 385. https://doi.org/10.4103/0019-5154.185700
- 21. Hertz‐Picciotto, I., Schmidt, R.J., Krakowiak, P. 2018. Understanding environmental contributions to autism: Causal concepts and the state of science. Autism Research, 11(4), 554–586. https://doi.org/10.1002/aur.1938
- 22. Ijomone, O.M., Olung, N.F., Akingbade, G.T., Okoh, C.O.A., Aschner, M. 2020. Environmental influence on neurodevelopmental disorders: Potential association of heavy metal exposure and autism. Journal of Trace Elements in Medicine and Biology, 62, 126638. https://doi.org/10.1016/j.jtemb.2020.126638
- 23. Jackman, A., Zwaigenbaum, L. 2023. The history of autism spectrum disorder. In D.D. Eisenstat, D. Goldowitz, T.F. Oberlander, J.Y. Yager (Éds.), Neurodevelopmental Pediatrics (p. 215–226). Springer International Publishing. https://doi.org/10.1007/978-3-031-20792-1_12
- 24. Kim, K.-N., Kwon, H.-J., Hong, Y.-C. 2016. Lowlevel lead exposure and autistic behaviors in schoolage children. NeuroToxicology, 53, 193–200. https://doi.org/10.1016/j.neuro.2016.02.004
- 25. Napolitano, A., Schiavi, S., La Rosa, P., RossiEspagnet, M.C., Petrillo, S., Bottino, F., Tagliente, E., Longo, D., Lupi, E., Casula, L., Valeri, G., Piemonte, F., Trezza, V., Vicari, S. 2022. Sex differences in autism spectrum disorder: diagnostic, neurobiological, and behavioral features. Frontiers in Psychiatry, 13, 889636. https://doi.org/10.3389/fpsyt.2022.889636
- 26. Neggers, Y.H. 2014. Increasing prevalence, changes in diagnostic criteria, and nutritional risk factors for autism spectrum disorders. ISRN Nutrition, 1–14. https://doi.org/10.1155/2014/514026
- 27. Saghazadeh, A., Rezaei, N. 2017. Systematic review and meta-analysis links autism and toxic metals and highlights the impact of country development status : Higher blood and erythrocyte levels for mercury and lead, and higher hair antimony, cadmium, lead, and mercury. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 79, 340–368. https://doi.org/10.1016/j.pnpbp.2017.07.011
- 28. Stunt, J., Van Grootel, L., Bouter, L., Trafimow, D., Hoekstra, T., De Boer, M. 2021. Why we habitually engage in null-hypothesis significance testing: A qualitative study. PLOS ONE, 16(10), e0258330. https://doi.org/10.1371/journal.pone.0258330
- 29. Sulaiman, R., Wang, M., Ren, X. 2020. Exposure to aluminum, cadmium, and mercury and autism spectrum disorder in children: A systematic review and meta-analysis. Chemical Research in Toxicology, 33(11), 26992718. https://doi.org/10.1021/acs.chemrestox.0c00167
- 30. Tizabi, Y., Bennani, S., El Kouhen, N., Getachew, B., Aschner, M. 2023a. Interaction of heavy metal lead with gut microbiota: implications for autism spectrum disorder. Biomolecules, 13(10), 1549. https://doi.org/10.3390/biom13101549
- 31. Tizabi, Y., Bennani, S., El Kouhen, N., Getachew, B., Aschner, M. 2023b. Interaction of heavy metal lead with gut microbiota: implications for autism spectrum disorder. Biomolecules, 13(10), 1549. https://doi.org/10.3390/biom13101549
- 32. Tordjman, S., Somogyi, E., Coulon, N., Kermarrec, S., Cohen, D., Bronsard, G., Bonnot, O., WeismannArcache, C., Botbol, M., Lauth, B., Ginchat, V., Roubertoux, P., Barburoth, M., Kovess, V., Geoffray, M.-M., Xavier, J. 2014. Gene x environment interactions in autism spectrum disorders: role of epigenetic mechanisms. Frontiers in Psychiatry, 5. https://doi.org/10.3389/fpsyt.2014.00053
- 33. Vogindroukas, I., Stankova, M., Chelas, E.-N., Proedrou, A. 2022. Language and speech characteristics in autism. Neuropsychiatric Disease and Treatment, Volume 18, 2367–2377. https://doi.org/10.2147/NDT.S331987
- 34. Wiggins, L.D., Rice, C.E., Barger, B., Soke, G.N., Lee, L.-C., Moody, E., Edmondson-Pretzel, R., Levy, S.E. 2019. DSM-5 criteria for autism spectrum disorder maximizes diagnostic sensitivity and specificity in preschool children. Social Psychiatry and Psychiatric Epidemiology, 54(6), 693–701. https://doi.org/10.1007/s00127-019-01674-1
- 35. Wróblewski, M., Wróblewska, J., Nuszkiewicz, J., Pawłowska, M., Wesołowski, R., Woźniak, A. 2023. The role of selected trace elements in oxidoreductive homeostasis in patients with thyroid diseases. International Journal of Molecular Sciences, 24(5), 4840. https://doi.org/10.3390/ijms24054840
- 36. Xu, G., Strathearn, L., Liu, B., O’Brien, M., Kopelman, T.G., Zhu, J., Snetselaar, L.G., Bao, W. 2019. Prevalence and treatment patterns of autism spectrum disorder in the United States, 2016. JAMA Pediatrics, 173(2), 153. https://doi.org/10.1001/jamapediatrics.2018.4208
- 37. Yasuda, H., Yasuda, Y., Tsutsui, T. 2013. Estimation of autistic children by metallomics analysis. Scientific Reports, 3, 1199. https://doi.org/10.1038/srep01199
- 38. Yu, E.X., Dou, J.F., Volk, H.E., Bakulski, K.M., Benke, K., Hertz-Picciotto, I., Schmidt, R.J., Newschaffer, C.J., Feinberg, J.I., Daniels, J., Fallin, M.D., Ladd-Acosta, C., Hamra, G.B. 2024. Prenatal metal exposures and child social responsiveness scale scores in 2 prospective studies. Environmental Health Insights, 18, 11786302231225313. https://doi.org/10.1177/11786302231225313
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-175f9907-050c-4672-98ef-853a70cf87f7