Czasopismo
2022
|
Vol. 55, nr 1
|
978--1013
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
In this article, inspired by the projection technique of Solodov and Svaiter, we exploit the simple structure, low memory requirement, and good convergence properties of the mixed conjugate gradient method of Stanimirović et al. [New hybrid conjugate gradient and broyden-fletcher-goldfarbshanno conjugate gradient methods, J. Optim. Theory Appl. 178 (2018), no. 3, 860–884] for unconstrained optimization problems to solve convex constrained monotone nonlinear equations. The proposed method does not require Jacobian information. Under monotonicity and Lipschitz continuity assumptions, the global convergence properties of the proposed method are established. Computational experiments indicate that the proposed method is computationally efficient. Furthermore, the proposed method is applied to solve the ℓ1 -norm regularized problems to decode sparse signals and images in compressive sensing.
Czasopismo
Rocznik
Tom
Strony
978--1013
Opis fizyczny
Bibliogr. 54 poz., rys., tab., wykr.
Twórcy
- Center of Excellence in Theoretical and Computational Science (TaCS-CoE), SCL 802 Fixed Point Laboratory, Science Laboratory Building, Faculty of Science, King Mongkut’s University of Technology Thonburi (KMUTT), 126 Pracha Uthit Rd., Bang Mod, Thung Khru, Bangkok 10140, Thailand
- Department of Mathematics and Applied Mathematics, Sefako Makgatho Health Sciences University, Ga-Rankuwa, Pretoria, Medunsa-0204, South Africa
autor
- Center of Excellence in Theoretical and Computational Science (TaCS-CoE), SCL 802 Fixed Point Laboratory, Science Laboratory Building, Faculty of Science, King Mongkut’s University of Technology Thonburi (KMUTT), 126 Pracha Uthit Rd., Bang Mod, Thung Khru, Bangkok 10140, Thailand , poom.kum@kmutt.ac.th
- Department of Medical Research, China
- Medical University Hospital, China Medical University, Taichung 40402, Taiwan
autor
- Department of Mathematics and Applied Mathematics, Sefako Makgatho Health Sciences University, Ga-Rankuwa, Pretoria, Medunsa-0204, South Africa
- Department of Mathematical Sciences, Faculty of Physical Sciences, Bayero University, Kano. Kano, Nigeria
- Department of Mathematics, Usmanu Danfodiyo University, Sokoto, Nigeria
autor
- Department of Mathematical Sciences, Faculty of Physical Sciences, Bayero University, Kano. Kano, Nigeria
Bibliografia
- [1] N. A. Iusem and V. M. Solodov, Newton-type methods with generalized distances for constrained optimization, Optimization 41 (1997), no. 3, 257–278.
- [2] A. H. Ibrahim, P. Kumam, W. Kumam, A family of derivative-free conjugate gradient methods for constrained nonlinear equations and image restoration, IEEE Access 8 (2020), 162714–162729.
- [3] B. Ghaddar, J. Marecek, and M. Mevissen, Optimal power flow as a polynomial optimization problem, IEEE Trans. Power Syst. 31 (2016), no. 1, 539–546.
- [4] Z. Dai and J. Kang, Some new efficient mean-variance portfolio selection models, Int. J. Finance Econom. 27 (2022), no. 4, 4784–4796.
- [5] Z. Dai, X. Dong, J. Kang, and L. Hong, Forecasting stock market returns: New technical indicators and two-step economic constraint method, North Am. J. Econom. Finance 53 (2020), 101216.
- [6] W. Sun and Y. X. Yuan, Optimization Theory and Methods: Nonlinear Programming, vol. 1, Springer, New York, NY, 2006.
- [7] J. Nocedal and S. J. Wright, Numerical Optimization, Springer, New York, NY, 2006.
- [8] W. LaCruz, J. Martiiinez, and M. Raydan, Spectral residual method without gradient information for solving large-scale nonlinear systems of equations, Math. Comput. 75 (2006), no. 255, 1429–1448.
- [9] M. Y. Waziri, W. J. Leong, M. A. Hassan, and M. Monsi, Jacobian computation-free Newton’s method for systems of nonlinear equations, J. Numer. Math. Stochastic. 2 (2010), no. 1, 54–63.
- [10] H. Mohammad and M. Y. Waziri, On Broyden-like update via some quadratures for solving nonlinear systems of equations, Turkish J. Math. 39 (2015), no. 3, 335–345.
- [11] A. H. Ibrahim, P. Kumam, A.Kamandi, and A. B. Abubakar, An efficient hybrid conjugate gradient method for unconstrained optimization, Optim. Meth. Software (2022), 1–14. DOI: 10.1080/10556788.2021.1998490.
- [12] W. W. Hager and H. Zhang, A survey of nonlinear conjugate gradient methods, Pacific J Optim. 2 (2006), no. 1, 35–58.
- [13] G. Yuan, X. Wang, and Z. Sheng, Family weak conjugate gradient algorithms and their convergence analysis for nonconvex functions, Numer. Algorithms. 84 (2020), no. 3, 935–956.
- [14] G. Yuan, J. Lu, and Z. Wang, The PRP conjugate gradient algorithm with a modified WWP line search and its application in the image restoration problems, Appl. Numer. Math. 152 (2020), 1–11.
- [15] G. Yuan, Z. Wei, and Y. Yang, The global convergence of the Polak-Ribière-Polyak conjugate gradient algorithm under inexact line search for nonconvex functions, J. Comput. Appl. Math. 362 (2019), 262–275.
- [16] G. Yuan, X. Wang, and Z. Sheng, The projection technique for two open problems of unconstrained optimization problems, J. Optim. Theory Appl. 186 (2020), no. 2, 590–619.
- [17] A. B. Abubakar, M. Malik, P. Kumam, H. Mohammad, M. Sun, A. H. Ibrahim, and A. I. Kiri, A liu-storey-type conjugate gradient method for unconstrained minimization problem with application in motion control, J King Saud Univ-Sci. 34 (2022), no. 4, 101923.
- [18] A. B. Abubakar, P. Kumam, M. Malik, and A. H. Ibrahim, A hybrid conjugate gradient based approach for solving unconstrained optimization and motion control problems, Mathematics and Computers in Simulation 201 (2021), 640–657.
- [19] H. Mohammad, A diagonal PRP-type projection method for convex constrained nonlinear monotone equations, J. Industr. Manag. Optim. 17 (2021), no. 1, 101–116. DOI: https://doi.org/10.3934/jimo.2019101.
- [20] C. Wang, Y. Wang, and C. Xu, A projection method for a system of nonlinear monotone equations with convex constraints, Math. Meth. Operat. Res. 66 (2007), no. 1, 33–46.
- [21] M. V. Solodov and B. F. Svaiter, A globally convergent inexact Newton method for systems of monotone equations, Reformulation: Nonsmooth, Piecewise Smooth, Semismooth and Smoothing Methods, Springer, Boston, MA, 1998, pp. 355–369.
- [22] F. Ma and C. Wang, Modified projection method for solving a system of monotone equations with convex constraints, J. Appl. Math. Comput. 34 (2010), no. 1, 47–56.
- [23] L. Zhang and W. Zhou, Spectral gradient projection method for solving nonlinear monotone equations, J. Comput. Appl. Math. 196 (2006), no. 2, 478–484.
- [24] Z. Yu, J. Lin, J. Sun, Y. H. Xiao, L. Liu, and Z. H. Li, Spectral gradient projection method for monotone nonlinear equations with convex constraints, Appl. Numer. Math. 59 (2009), no. 10, 2416–2423.
- [25] Z. Dai and H. Zhu, A modified Hestenes-Stiefel-type derivative-free method for large-scale nonlinear monotone equations, Mathematics 8 (2020), no. 2, 168.
- [26] A. H. Ibrahim, P. Kumam, A. B. Abubakar, and J. Abubakar, A method with inertial extrapolation step for convex constrained monotone equations, J Inequalit. Appl. 2021 (2021), no. 1, 1–25.
- [27] A. H. Ibrahim, M. Kimiaei, and P. Kumam, A new black box method for monotone nonlinear equations, Optimization (2021), 1–19. DOI: 10.1080/02331934.2021.2002326.
- [28] A. H. Ibrahim, J. Deepho, A. B. Abubakar, and A. Adamu, A three-term Polak-Ribière-Polyak derivative-free method and its application to image restoration, Sci African 13 (2021), e00880.
- [29] A. B. Abubakar, P. Kumam, A. H. Ibrahim, P. Chaipunya, and S. A. Rano, New hybrid three-term spectral-conjugate gradient method for finding solutions of nonlinear monotone operator equations with applications, Mathematics and Computers in Simulation 201 (2022), 670–683.
- [30] A. H. Ibrahim, P. Kumam, B. A. Hassan, A. B. Abubakar, and J. Abubakar, A derivative-free three-term Hestenes-Stiefel type method for constrained nonlinear equations and image restoration, Int. J. Comput. Math. 99 (2022), no. 5, 1041–1065.
- [31] A. B. Abubakar, P. Kumam, and A. H. Ibrahim, Inertial derivative-free projection method for nonlinear monotone operator equations with convex constraints, IEEE Access 9 (2021), 92157–92167.
- [32] A. H. Ibrahim, P. Kumam, A. B. Abubakar, and A. Adamu, Accelerated derivative-free method for nonlinear monotonne equations with an application, Numer. Linear Algebra Appl. 29 (2022), e2424.
- [33] A. H. Ibrahim and P. Kumam, Re-modified derivative-free iterative method for nonlinear monotone equations with convex constraints, Ain Shams Eng. J. 12 (2021), no. 2, 2205–2210.
- [34] Y. Zheng and B. Zheng, Two new Dai-Liao-type conjugate gradient methods for unconstrained optimization problems, J. Optim. Theory Appl. 175 (2017), no. 2, 502–509.
- [35] P. S Stanimirović, B. Ivanov, S. Djordjević, and I. Brajević, New hybrid conjugate gradient and broyden-fletcher-goldfarbshanno conjugate gradient methods, J. Optim. Theory Appl. 178 (2018), no. 3, 860–884.
- [36] M. A. T. Figueiredo, R. D. Nowak, and S. J. Wright, Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems, IEEE J Selected Topics Signal Process 1 (2007), no. 4, 586–597.
- [37] Y. Xiao and H. Zhu, A conjugate gradient method to solve convex constrained monotone equations with applications in compressive sensing, J. Math. Anal. Appl. 405 (2013), no. 1, 310–319.
- [38] J. Liu and S. Li, A projection method for convex constrained monotone nonlinear equations with applications, Comput. Math. Appl. 70 (2015), no. 10, 2442–2453.
- [39] J. Liu and Y. Feng, A derivative-free iterative method for nonlinear monotone equations with convex constraints, Numer. Algorithms. 82 (2019), no. 1, 245–262.
- [40] E. D. Dolan and J. J. Moré, Benchmarking optimization software with performance profiles, Math. Program. 91 (2002), no. 2, 201–213.
- [41] D. L. Donoho, For most large underdetermined systems of linear equations the minimal 1ℓ -norm solution is also the sparsest solution, Commun. Pure Appl. Math. 59 (2006), no. 6, 797–829.
- [42] D. L Donoho, Compressed sensing, IEEE Trans Inform Theory 52 (2006), no. 4, 1289–1306.
- [43] E. Candes and J. Romberg, Sparsity and incoherence in compressive sampling, Inverse Problems 23 (2007), no. 3, 969.
- [44] I. Daubechies, M. Defrise, and C. De Mol, An iterative thresholding algorithm for linear inverse problems with a sparsity constraint, Commun. Pure Appl. Math. J. Issued Courant Inst. Math. Sci. 57 (2004), no. 11, 1413–1457.
- [45] A. Beck and M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse problems, SIAM J. Imaging Sci. 2 (2009), no. 1, 183–202.
- [46] Y. Xiao, Q. Wang, and Q. Hu, Non-smooth equations based method for 1ℓ -norm problems with applications to compressed sensing, Nonlinear Anal. Theory Methods Appl. 74 (2011), no. 11, 3570–3577.
- [47] A. H. Ibrahim, P. Kumam, A. B. Abubakar, and J. Abubakar, A descent three-term derivative-free method for signal reconstruction in compressive sensing, Carpathian J. Math. 38 (2022), no. 2, 431–443.
- [48] A. C Bovik, Handbook of Image and Video Processing, Academic Press, London, UK, 2010.
- [49] S. M. Lajevardi, Structural similarity classifier for facial expression recognition, Signal Image Video Process 8 (2014), no. 6, 1103–1110.
- [50] Y. Bing and G. Lin, An efficient implementation of Merrill’s method for sparse or partially separable systems of nonlinear equations, SIAM J Optim. 1 (1991), no. 2, 206–221.
- [51] Y. Ding, Y. Xiao, and J. Li, A class of conjugate gradient methods for convex constrained monotone equations, Optimization 66 (2017), no. 12, 2309–2328.
- [52] A. H. Ibrahim, P. Kumam, A. B. Abubakar, W. Jirakitpuwapat, and J. Abubakar, A hybrid conjugate gradient algorithm for constrained monotone equations with application in compressive sensing, Heliyon 6 (2020), no. 3, e03466.
- [53] W. La Cruz, A spectral algorithm for large-scale systems of nonlinear monotone equations, Numer. Algorithms 76 (2017), no. 4, 1109–1130.
- [54] G. Yu, S. Niu, and J. Ma, Multivariate spectral gradient projection method for nonlinear monotone equations with convex constraints, J. Industr. Manag. Optim. 9 (2013), no. 1, 117–129
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-1729217e-5e78-40d9-9f1e-21fdd1f5d418